
PRACA MAGISTERSKA

Uniwersalny blok wejść - wyjść analogowych i cyfrowych do komputera PC

Dawid NAJDA
Nr albumu: 281533

Kierunek: Automatyka i Robotyka
Specjalność: Robotyka

PROWADZĄCY PRACĘ
dr inż. Mirosław Magnuski

KATEDRA Elektroniki, Elektrotechniki i Mikroelektroniki
Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2024

Tytuł pracy

Uniwersalny blok wejść - wyjść analogowych i cyfrowych do komputera PC

Streszczenie

Niniejsza praca magisterska przedstawia projekt i realizację uniwersalnego bloku wejść-
wyjść analogowych i cyfrowych dla komputera PC. W ramach pracy stworzono urządzenie,
które umożliwia zdalne pomiary i generowanie sygnałów oraz przesył rezultatów pomia-
rów do użytkownika za pomocą standardowych interfejsów komunikacyjnych. W pracy
opisano zastosowane przetworniki, techniki komunikacji z peryferiami, najważniejsze ele-
menty oprogramowania oraz sposób sterowania działaniem urządzenia. Przeprowadzono
również kalibrację oraz eksperymenty, które potwierdziły funkcjonalność i poprawność
działania zbudowanego prototypu. Praca kończy się omówieniem uzyskanych wyników
oraz propozycjami dalszego rozwoju projektu.

Słowa kluczowe

zdalne połączenie, blok wejść-wyjść, przetworniki, analogowo-cyfrowe, cyfrowo-analogowe

Thesis title

Universal analog and digital input - output block for PC computer

Abstract

This master’s thesis presents the design and implementation of a universal analog and
digital input-output block for a PC. As part of the project, a device was created that en-
ables remote measurements and signal generation, as well as the transmission of measure-
ment results to the user via standard communication interfaces. The thesis describes the
applied converters, techniques for communication with peripherals, key software compon-
ents, and the method of controlling the device’s operation. Calibration and experiments
were also conducted, confirming the functionality and correctness of the constructed pro-
totype. The thesis concludes with a discussion of the obtained results and proposals for
further development of the project.

Key words

remote connection, input-output block, converters, analog-to-digital, digital-to-analog

Spis treści

1 Wstęp 1
1.1 Cel pracy . 2
1.2 Zakres pracy . 2

2 Analiza tematu 3
2.1 Przetworniki . 3

2.1.1 Cel przetwarzania sygnałów . 3
2.1.2 Zasada działania przetworników . 4
2.1.3 Parametry charakteryzujące przetworniki 5

2.2 Ocena jakości działania przetworników . 6
2.2.1 Parametry termiczne . 6
2.2.2 Monotoniczność . 6
2.2.3 Nieliniowość przetwarzania . 6
2.2.4 Błąd niezrównoważenia . 8
2.2.5 Błąd kwantyzacji . 8
2.2.6 Współczynnik zawartości harmonicznych 9

2.3 Techniki pomagające poprawić jakość . 9
2.3.1 Dither . 9
2.3.2 Budowa przetworników . 9
2.3.3 Budowa przetworników analogowo-cyfrowych 10
2.3.4 Budowa przetworników cyfrowo-analogowych 15

2.4 Komunikacja z peryferiami . 20
2.4.1 Układ UART . 20
2.4.2 Magistrala I2C . 21
2.4.3 Interfejs SPI . 21

2.5 Połączenie między urządzeniami . 22
2.5.1 Łącze RS-232 . 22
2.5.2 Łącze RS-485 . 22
2.5.3 Magistrala USB . 23
2.5.4 Standard Ethernet . 23
2.5.5 Standard Wi-Fi . 24

5

2.5.6 Standard Bluetooth . 24
2.6 Wybór sposobu komunikacji . 25

2.6.1 Gniazda (sockets) . 25
2.6.2 WebSocket . 26
2.6.3 Serwer HTTP . 27

2.7 Koncepcja pracy . 28
2.7.1 Zadawanie zadań urządzeniu . 29

3 Konstrukcja budowanego urządzenia 31
3.1 Użyte podzespoły . 31

3.1.1 Mikrokontroler . 31
3.1.2 Przetworniki A/C i C/A . 32
3.1.3 Wzmacniacze . 33
3.1.4 Inne układy . 34
3.1.5 Schematy ideowe torów . 34

3.2 Połączenie z komputerem . 38
3.3 Oprogramowanie . 40

3.3.1 Inicjalizacja układu . 40
3.3.2 Praca ciągła . 41

3.4 Punkty końcowe API . 42
3.4.1 Powitanie, pomoc, ogólne informacje 42
3.4.2 Wgrywanie zadania do urządzenia 42
3.4.3 Wykonywanie zadania i odbiór danych 43

3.5 Parser i interpreter . 43
3.5.1 Zamiana tekstu na format binarny – parser zadania 44
3.5.2 Interpreter zadań . 44

3.6 Wykonywanie zadań . 47
3.6.1 Pętle . 47
3.6.2 Instrukcje . 47

3.7 Generator sygnałów . 49
3.7.1 Typy przebiegów możliwych do użycia w generatorach 50
3.7.2 Modyfikatory przebiegów . 51
3.7.3 Opis przykładowych generatorów 52

3.8 Prototyp bloku wejść-wyjść analogowych i cyfrowych 53

4 Kalibracja i testy urządzenia 55
4.1 Kalibracja wejść i wyjść . 56

4.1.1 Kalibracja wejść analogowych . 57
4.1.2 Kalibracja dzielników napięcia i wzmocnień 58
4.1.3 Kalibracja wyjścia napięciowego . 58

4.1.4 Kalibracja wyjścia prądowego . 59
4.1.5 Test wejść cyfrowych . 60
4.1.6 Test wyjść cyfrowych . 60

4.2 Sprawdzenie charakterystyki częstotliwościowej wyjścia 61
4.3 Przykładowe generatory – podstawowe sygnały 64
4.4 Odpowiedź częstotliwościowa wejścia napięciowego 70

4.4.1 Badanie sygnałem sinusoidalnym 70
4.4.2 Badanie sygnałem świergotowym 71

4.5 Eksperyment 1 – wyznaczenie charakterystyk tranzystora BJT 72
4.5.1 Badanie charakterystyki wejściowej tranzystora 72
4.5.2 Badanie charakterystyki przejściowej tranzystora 73
4.5.3 Badanie charakterystyki wyjściowej tranzystora 73
4.5.4 Wykresy charakterystyk tranzystorów 2N3904 i 2N3055 wyznaczone

za pomocą prototypu bloku wejść-wyjść 74
4.6 Eksperyment 2 – wyznaczenie charakterystyk diod półprzewodnikowych . . 78
4.7 Eksperyment 3 – wyznaczenie odpowiedzi częstotliwościowej filtra 79

5 Podsumowanie 85

Bibliografia 90

A Dokumentacja techniczna 93
A.1 Oprogramowanie . 93
A.2 Klasy . 93

A.2.1 Obsługa przetwornika A/C . 93
A.2.2 Obsługa przetwornika C/A . 95
A.2.3 Obsługa ekspandera GPIO . 96
A.2.4 Odczytywanie ustawień . 99
A.2.5 Zadania . 102
A.2.6 Parser . 105
A.2.7 Generatory . 110

A.3 Przestrzenie nazw . 123
A.3.1 Komunikacja między wątkami . 123
A.3.2 Serwer HTTP . 125
A.3.3 Obsługa sprzętu i interpreter . 135

A.4 Programy służące do pomiarów . 159
A.4.1 Wyznaczanie charakterystyki częstotliwościowej wejścia 159
A.4.2 Wyznaczanie charakterystyki wejściowej tranzystora 162
A.4.3 Wyznaczanie charakterystyki przejściowej tranzystora 164
A.4.4 Wyznaczanie charakterystyki wyjściowej tranzystora 166

A.4.5 Wyznaczanie odpowiedzi częstotliwościowej świergotem 167
A.4.6 Wyznaczanie odpowiedzi częstotliwościowej sinusoidami 171

B Schemat ideowy całego bloku wejść-wyjść analogowych i cyfrowych 175

C Spis skrótów i symboli 179

Spis rysunków 183

Spis kodów 187

Rozdział 1

Wstęp

Urządzenia pomiarowe znajdują szerokie zastosowanie w praktycznie każdej dziedzinie
techniki i nauki, w przemyśle, w laboratoriach naukowych oraz po prostu przy zastosowa-
niach domowych. Oczywiście, w zaawansowanych procesach stosuje się dedykowane urzą-
dzenia zaprojektowane specjalnie do tego celu. Jednakże w wielu sytuacjach, szczególnie
niestandardowych lub niespodziewanych, możliwe (a nawet konieczne) jest wykorzystanie
urządzeń uniwersalnych, i dostosowanie ich do bieżących potrzeb, choćby ze względu na
czas i koszt stworzenia rozwiązania dedykowanego. Zaletą w takich sytuacjach z pewnością
jest wielofunkcyjność danego urządzenia, co pozwala ograniczyć miejsce, ilość przewodów
czy czas. Dodatkowym pozytywem jest możliwość zdalnej komunikacji z takim urządze-
niem, co pozwala na umieszczenie go na przemieszczającym się obiekcie lub w środowisku
niesprzyjającym przebywaniu ludzi.

Najczęściej bezpośrednio mierzoną wielkością jest napięcie. Za jego pomocą zaś można
mierzyć inne wielkości fizyczne, używając odpowiednich układów dokonujących analo-
gowych konwersji. Są to na przykład: natężenie prądu, opór, pojemność, indukcyjność,
natężenia pól elektrycznych i magnetycznych, natężenie światła i dźwięku, siłę nacisku,
ciśnienie, wagę, masę, moment obrotowy, i wiele, wiele innych.

Najczęściej wyjściową wielkością jest również napięcie, zaś za jego pomocą można gene-
rować inne wielkości fizyczne, używając odpowiednich układów analogowych lub wzmac-
niaczy – np. natężenie prądu, pole elektryczne lub magnetyczne, światło, dźwięk, ruch
liniowy lub obrotowy i inne.

W czasach przed epoką cyfrową wykorzystywało się różne urządzenia pomiarowe do
przedstawienia danych lub przebiegów operatorowi, który na ich podstawie mógł podej-
mować jakieś decyzje. Współcześnie również są one wykorzystywane, jednak coraz częściej
(szczególnie takie wymagające analizy) przetwarzane są komputerowo, dlatego dużą za-
letą jest urządzenie pomiarowe, które działa również cyfrowo oraz potrafi w prosty sposób
łączyć się z komputerem. Urządzenia cyfrowe ułatwiają też obserwację zdarzeń losowych,
nawet pojedynczych.

1

Dawid Najda

1.1 Cel pracy

Celem pracy jest stworzenie uniwersalnego bloku wejść - wyjść analogowych i cy-
frowych do komputera PC. Ma to być elektroniczne urządzenie pomiarowe, sterowane
zdalnie za pomocą komputera osobistego. Powinno ono być możliwie uniwersalne – być w
stanie przynajmniej w ograniczonym zakresie zastępować narzędzia takie jak multimetr
[7], oscyloskop, generator funkcji/sygnałów [29] czy generator wzorców cyfrowych.

1.2 Zakres pracy

Budowany blok pomiarowy będzie wyposażony w wejścia i wyjścia analogowe, zarówno
napięciowe jak i prądowe. Oprócz tego, dostępne będą również wejścia i wyjścia cyfrowe.
Wszystkie porty analogowe powinny obsługiwać zarówno dodatnie jak i ujemne polaryza-
cje sygnałów. Wejścia analogowe powinny mieć wybieralne zakresy wartości. Urządzenie
zostanie zbudowane na płytce uniwersalnej, która otrzyma obudowę stworzoną za pomocą
drukarki 3D. Niektóre komponenty (szczególnie mikroprocesor) będą użyte w postaci go-
towych płytek w celu uniknięcia montażu elementów SMD oraz ze względu na generalnie
mniejszy rozmiar, krótsze połączenia, a więc i lepsze działanie w tego typu rozwiązaniach.
Całość zarządzana będzie przez mikrokontroler, oprogramowany w języku C++, z którym
można będzie się komunikować za pomocą komputera osobistego.

2

Rozdział 2

Analiza tematu

2.1 Przetworniki

Przetworniki to układy elektroniczne mające na celu zamianę jakiejś wielkości fizycznej
(najczęściej napięcia) na wartości cyfrowe (zdyskretyzowane i skwantowane) lub vice-
versa.

2.1.1 Cel przetwarzania sygnałów

Przetwarzanie analogowo-cyfrowe

Przetwornik A/C (ang. A/D – Analog to Digital, ADC – Analog-Digital Converter) –
jest to układ elektroniczny służący do zamiany sygnału analogowego na sygnał cyfrowy.
Dzięki temu możliwe jest przetwarzanie ich w urządzeniach elektronicznych opartych o
architekturę zero-jedynkową oraz przechowywanie na dostosowanych do tej architektury
nośnikach danych.
Najczęściej bezpośrednio mierzoną wartością jest napięcie, zaś za jego pomocą można mie-
rzyć inne wielkości fizyczne, używając odpowiednich układów analogowych – np. natężenie
prądu i opór, natężenie pola elektrycznego i magnetycznego, pojemność i indukcyjność,
natężenie światła lub dźwięku, siłę nacisku, wagę, masę, moment obrotowy, i wiele, wiele
innych. Wyspecjalizowane przetworniki służą też do robienia zdjęć.

Przetwarzanie cyfrowo-analogowe

Przetwornik C/A (ang. D/A – Digital to Analog, DAC – Digital-Analog Converter) –
jest to układ elektroniczny zamieniający sygnał cyfrowy na sygnał analogowy. Dzięki
temu istnieje możliwość wpływu na systemy analogowe, mechaniczne, itp. za pomocą
kontrolerów cyfrowych.
Najczęściej generowaną wartością jest napięcie, zaś za jego pomocą można tworzyć inne
wielkości fizyczne, używając odpowiednich układów analogowych lub wzmacniaczy – np.

3

Dawid Najda

natężenie prądu, pole elektryczne lub magnetyczne, światło, dźwięk/muzykę, ruch liniowy
lub obrotowy i inne.

2.1.2 Zasada działania przetworników

(a) Analogowo-cyfrowy (b) Cyfrowo-analogowy

Rys. 2.1: Symbole przetworników

Przetworniki analogowo-cyfrowe

Przetwarzanie A/C dzieli się ogólnie na 3 etapy: próbkowanie, kwantyzacja i kodowa-
nie. Najpierw należy stworzyć sygnał dyskretny, reprezentujący sygnał ciągły w czasie za
pomocą listy wartości nazywanych próbkami. Następnie przeprowadza się kwantyzację –
czyli zastępuje próbki, które mogą przyjmować dowolne wartości, na jakąś skończoną ilość
stanów, za pomocą wewnętrznych elementów przetwornika [15]. Finalnie, stan wewnętrzny
zamieniany jest na odpowiednie kody binarne, które można potem wyprowadzić: bezpo-
średnio na zewnątrz – równolegle, lub przesłać szeregowo za pomocą dowolnego protokołu.

Przetworniki cyfrowo-analogowe

Przetwarzanie C/A dzieli się ogólnie na 3 etapy: dekodowanie, generacja, wystawia-
nie. Najpierw, kod binarny jest odbierany, albo przez wejście równoległe, albo szeregowe.
Potem jest zamieniany na odpowiedni stan wewnętrzny. Następnie ma miejsce generacja
– za pomocą elementów ustawionych w poprzednim kroku, tworzona jest odpowiadająca
wartość. Finalnie, jest ona przekazana na wyjście i podtrzymana za pomocą elementu
buforującego [15].

Podsumowanie

Oba rodzaje przetworników są bardzo podobne pod względem idei działania. Oczywi-
ście proces musi być w odwrotnej kolejności. Przetwarzanie A/C jest popularniejsze niż
C/A, ze względu na to, że przeważnie zależy nam na zbieraniu informacji z wielu czujników
lub elementów, na podstawie zbioru których opracowywane jest przez układ kontrolujący
odpowiednie sterowanie jakimś elementem. Tak samo każde sprzężenie zwrotne, wykonane
cyfrowo, musi mieć w sobie przetwornik A/C.

4

Rozdział 2. Analiza tematu

2.1.3 Parametry charakteryzujące przetworniki

Każdy przetwornik jest opisany przez kilka parametrów, z czego niektóre są wzajemnie
zależne. Występują one w obu typach, jednak mogą nosić inną nazwę lub, zależnie od
kierunku, ich funkcja może się zmieniać.

Zakres

Oznacza on zakres napięć wejściowych lub wyjściowych, który przetwornik może po-
prawnie odczytać lub wytworzyć; nazywany jest „prawidłowym zakresem konwersji” prze-
twornika. Zakres ma zawsze dolną i górną granicę: Urange = Uupper − Ulower. Najczęściej
wyróżnia się dwa przypadki: Ulower = 0 V – klasyfikowany jako jednobiegunowy (unipo-
larny), Ulower = −Uupper – klasyfikowany jako dwubiegunowy (bipolarny).

Przetwornik A/C nie może dostarczyć wiarygodnych konwersji, jeśli napięcie wejściowe
jest poza zakresem. Najczęściej zwrócony kod będzie odpowiadać napięciu granicznemu,
które zostało przekroczone. Przetwornik C/A (pomijając celową konstrukcję) ze zrozumia-
łych względów nie przekroczy na wyjściu napięć zasilania.

Liczba bitów

Liczba bitów (oznaczana N) określa długość słowa wyjściowego lub wejściowego. Naj-
częściej stosowany jest kod w postaci liczby całkowitej, w przypadku przetworników bi-
polarnych przeważnie stosuje się kod z przesunięciem lub kod uzupełnień do dwóch, ze
względu na powszechność tej reprezentacji w systemach komputerowych. Każdy bit ozna-
cza podwojenie ilości poziomów kwantyzacji (gdyż jeden poziom kwantyzacji to jeden kod
bitowy), zgodnie ze wzorem #codes = 2N . Najniższy kod to 0, zaś najwyższy – 2N − 1.

Liczba bitów bezpośrednio określa również tzw. dynamic Range, jest to różnica między
maksymalnym i minimalnym sygnałem, podana w decybelach.

DR = 20 lg
(

2N

1

)
= 20 lg(2)N ≈ 6NdB

Rozdzielczość

Pojęcie to oznacza najmniejszą różnicę w analogowym sygnale, jaką może wykryć lub
wytworzyć przetwornik, odpowiadającą przełączeniu najniższego bitu. Wyznaczana jest
jako stosunek zakresu napięcia do ilości kodów cyfrowych [16].

ULSB = Urange

2N

5

Dawid Najda

Częstotliwość

Częstotliwość określa ile próbek w danym okresie czasu może zostać pobrane. Podaje
się ją w Hz lub sps (ang. samples per second, próbki na sekundę). Parametr ten może
zostać również jako odwrotność, tzn. okres lub czas próbkowania. Określa on co ile może
zostać pobrana lub wystawiona wartość analogowa. Jest to jeden z najważniejszych pa-
rametrów, gdyż określa maksymalną częstotliwość sygnału jaki przetwornik jest w stanie
zmierzyć lub wytworzyć, zgodnie z twierdzeniem Nyquista–Shannona. Wpływa również na
rozdzielczość w czasie, aliasing, zużycie energii oraz wymagania dotyczące przetwarzania
danych cyfrowych.

2.2 Ocena jakości działania przetworników

Zrozumiałym jest, że przetworniki, jak każdy fizyczny obiekt, nie działają w sposób
idealny. Nawet gdyby mogły, i tak sama idea działania narzuca pewne ograniczenia. Pre-
cyzja zależy od jakości wykonania oraz warunków otoczenia. Poniżej przedstawione są
parametry opisujące dokładność i jakość działania przetworników.

2.2.1 Parametry termiczne

Zmiana temperatury pracy, czy to przez zmianę temperatury otoczenia, czy wydziela-
nie ciepła, ma wpływ na zachowanie fizycznych elementów przetwornika, a więc i na wynik
jego pracy. Teoretycznie wszystkie rodzaje błędu mogą się zmieniać wraz z temperaturą,
często jednak karty katalogowe uwzględniają już zalecany przedział temperatur pracy
w wartościach błędów. Najczęściej jednak spotykany jest współczynnik zmian cieplnych
napięcia przesunięcia zera, wyrażany w µV

◦C lub %
◦C .

2.2.2 Monotoniczność

W przetwornikach C/A, jest to zdolność układu do zmiany napięcia wyłącznie w tym
samym kierunku co zmiana wejściowego słowa cyfrowego. Oznacza to, że jeśli wartość
zadana rośnie, to napięcie na wyjściu nie może zmaleć i vice versa. Jest to cecha pożądana
w źródłach sygnałów niskiej częstotliwości oraz w przetwornikach wykorzystywanych jako
programowalny trymer (nastawny komponent elektryczny służący do kalibracji działania
układu).

2.2.3 Nieliniowość przetwarzania

Wszystkie przetworniki cierpią na nieliniowość ze względu na niedoskonałości w proce-
sie produkcji. Powoduje to, że napięcie nie jest idealnie (liniowo lub inaczej, w przypadku
specjalnego nieliniowego przetwornika) powiązane ze słowem. Nieliniowości podaje się jako

6

Rozdział 2. Analiza tematu

procent wartości maksymalnej lub jako krotność napięcia nominalnego odpowiadającemu
najniższemu bitowi Un.

Nieliniowość różniczkowa

Nieliniowość różniczkowa (ang. DNL – differential nonlinearity) określa się przez wy-
znaczenie różnic między sąsiednimi wartościami napięcia, wywołujących (dla A/C) lub
wywoływanych przez (dla C/A) zmianę słowa o wartość najniższego bitu [16]. Określa
ona więc błąd jednorodności szerokości poziomów kwantyzacji. Nieliniowość różniczkowa
jest wyznaczana jako maksymalna różnica (zarówno dodatnia jak i ujemna) pomiędzy
rzeczywistą Ur a nominalną Un szerokością danego poziomu kwantyzacji:

ϵd = |Ur − Un|max

Un

LSB

Dla przykładu: Na poniższym rysunku, w maksymalnym przypadku, szerokość stopnia
wynosi 1.5 LSB (o wartości wyjściowej 101). Przez to DNL wyniesie +0.5 LSB. Natomiast
w minimalnym przypadku szerokość kroku wynosi tylko 0.5 LSB (dla wartości wyjściowej
001), czyli o 0.5 LSB mniej niż oczekiwana. Finalnie DNL będzie wynosić ±0.5 LSB.

Rys. 2.2: Przykład wyznaczania nieliniowości różniczkowej [2]

W skrajnym przypadku, niektóre kody wyjściowe mogą nigdy nie wystąpić i utracona
zostaje monotoniczność. Wtedy dolna granica DNL wychodzi poza -1 LSB.

Nieliniowość całkowa

Nieliniowość całkowa (ang. INL – integral nonlinearity) jest określana jako (∆UI)max –
maksymalna różnica napięcia pomiędzy rzeczywistą charakterystyką przetwarzania Q =
f(Ur) lub Ur = f(Q) a charakterystyką idealną Ui; odniesiona do nominalnej wartości
napięcia Un odpowiadającej najmniej znaczącemu bitowi [16]. Charakterystykę idealną
wyznacza się jako prostą łączącą skrajne punkty zakresu przetwarzania, charakterystykę

7

Dawid Najda

rzeczywistą natomiast jako linię łączącą środki przedziałów napięcia odpowiadających
kolejnym wartościom cyfrowym przetwornika.

ϵr = ±|Ur − Ui|max

Un

LSB

INL można interpretować jako pewnego rodzaju sumę nieliniowości różniczkowych
(DNL). Na przykład kilka kolejnych ujemnych wartości DNL przesuwa rzeczywistą krzywą w
lewo, a więc podnosi ją powyżej krzywej idealnej, jak pokazano na rysunku poniżej. INL
w tym przypadku jest dodatni. Ujemne INL wskazują, że rzeczywista krzywa znajduje
się poniżej krzywej idealnej. Podsumowując, rozkład nieliniowości różniczkowej określa
nieliniowość całkową przetwornika.

Rys. 2.3: Przykład wyznaczania nieliniowości całkowej [2]

2.2.4 Błąd niezrównoważenia

Znany też jako błąd przesunięcia zera; jest określany (dla A/C) przez wartość napięcia
wejściowego potrzebną do przejścia od zerowej wartości słowa wyjściowego do następ-
nej większej wartości, lub (dla C/A) wartość napięcia wyjściowego odpowiadającą zerowej
wartości słowa wejściowego. Mierzony jako przesunięcie w stosunku do charakterystyki
idealnej, tj. 1

2LSB. W większości nowoczesnych przetworników jest jednak możliwa całko-
wita kompensacja tego błędu.

2.2.5 Błąd kwantyzacji

W przetwornikach A/C, błąd kwantyzacji jest wprowadzony przez proces kwantyzacji,
obecny nawet w idealnym urządzeniu. Ze względu na ograniczoną długość słowa, wartości
ciągłe są zamieniane na zbiór kodów o ograniczonej liczebności. Błąd ten jest zależny od
przebiegu sygnału, do tego nie liniowo od wartości napięcia. W idealnym przetworniku
A/C, błąd jest równomiernie rozłożony w przedziale ±1

2 LSB (wartość bezwzględna błędu

8

Rozdział 2. Analiza tematu

jest mniejsza niż pół rozdzielczości). Dla sygnału o wartościach rozłożonych równomiernie
w zakresie przetwarzania, stosunek mocy sygnału do zakłócenia kwantyzacji (ang. signal-
to-quantization-noise ratio) jest równy Dynamic Range:

SQNR = DR

2.2.6 Współczynnik zawartości harmonicznych

Współczynnik zawartości harmonicznych i szum (ang. THD+N – Total harmonic dis-
tortion and noise) określa zawartość zniekształceń i zakłóceń wprowadzonych do sygnału
przez przetwornik C/A. Jest wyrażony jako stosunek sumy mocy niechcianych składowych
harmonicznych oraz szumu do mocy sygnału pożądanego.

2.3 Techniki pomagające poprawić jakość

2.3.1 Dither

W przetwornikach A/C, jakość może być zazwyczaj poprawiona przez tzw. dithering.
Jest to proces dodania bardzo słabego szumu (np. białego) do mierzonego sygnału. Po-
zwala to rozłożyć błąd kwantyzacji z przebiegu „piłokształtnego” na dużo bardziej stały.
Poprawia też precyzję pomiaru ciągłego, gdyż zamiast zaokrąglania w jedną stronę, przez
odchyły może powodować przeskok bitów, a więc przy uśrednianiu w czasie – lepszą precy-
zję. Niestety w zamian delikatnie wzmacnia zakłócenia. Proces ten jest używany np. przy
redukcji długości słowa (m.in. przy zmianie jakości obrazów) lub w układach całkujących,
gdzie drobny błąd kwantyzacji mógłby się nawarstwiać w czasie.

2.3.2 Budowa przetworników

Niektóre przetworniki mają zewnętrzne napięcie odniesienia, zaś inne – wewnętrzne.
Jest ono tak nazywane, ponieważ to w stosunku do jego wartości są porównywane próbki.
W przypadku przetworników A/C, względem napięcia odniesienia mierzone są wartości
napięcia na wejściu. W przypadku przetworników C/A, względem napięcia odniesienia
produkowane są wartości wyjściowe. W obu przypadkach oznacza to, że napięcie odnie-
sienia jest maksymalnym napięciem jakie przetwornik może zmierzyć lub wygenerować i
jednocześnie odpowiada najwyższemu kodowi bitowemu.

Bardzo często napięcie odniesienia jest dobrane jako iloczyn o postaci

Uref = 2n · 10−m V

gdzie n, m ∈ N. Ma to na celu uproszczenie przeliczania z systemu dwójkowego na dzie-
siętny. Przykład: n = 12 i m = −3, więc Uref = 4.096 V. Dla przetwornika 12-bitowego

9

Dawid Najda

istnieje 4096 możliwych stanów, dlatego w idealnym urządzeniu osiągamy rozdzielczość
1 mV.

2.3.3 Budowa przetworników analogowo-cyfrowych

Ze względu na sposób działania wyróżnia się trzy metody pracy: bezpośrednia, pośred-
nia, kompensacyjna. Istnieje kilka podstawowych typów, które różnią się zasadą działania
oraz osiągami. Stosują one jedną z powyższych metod. Dla każdego z nich mogą istnieć
różne modyfikacje, które poprawiają w jakiś sposób osiągi.

Przetwornik błyskawiczny

Przetwornik z rodzaju bezpośrednich, nazywany także błyskawicznym (ang. Flash).
Działa na zasadzie bezpośredniego i (najczęściej) jednoczesnego porównania wartości na-
pięcia wejściowego z szeregiem napięć odniesienia reprezentujących poszczególne poziomy
kwantowania za pomocą szeregu komparatorów analogowych. Rezultatem tego porówna-
nia jest kod jedynkowy (ang. unary) zwany też termometrycznym (ang. thermometer code)
ze względu na działanie analogiczne do termometru cieczowego – interesuje nas najwyższa
osiągnięta pozycja, czyli ilość pozytywnych wyników porównań. Kod taki wprowadzany
jest na specjalny koder, który wyprowadza wartość cyfrową (dwójkową) odpowiadającą
sygnałowi wejściowemu. Podstawową zaletą takich przetworników jest szybkość działania,
na którą składają się wyłącznie dwa czynniki: opóźnienie na komparatorze analogowym
oraz opóźnienie na koderze cyfrowym. Uzyskiwane częstotliwości są nawet do kilku rzę-
dów wielkości większe od pozostałych typów przetworników A/C. Niestety, ze względu
na potrzebę zastosowania równoległego pomiaru dla każdej możliwej wartości, liczba ele-
mentów podwaja się z każdym bitem. Zwiększenie rozdzielczości wymaga też zwiększenia
precyzyjności napięć odniesienia, uzyskiwanych zazwyczaj z dzielnika oporowego napięcia
odniesienia. Zwiększenie ilości komparatorów skutkuje dodatkowo zwiększeniem pojem-
ności wejściowej, a więc ograniczeniem pasma wejściowego sygnału, co jest sprzeczne z
główną zaletą. Podsumowując, najczęściej mają one nie więcej niż 8 bitów rozdzielczości.

10

Rozdział 2. Analiza tematu

Rys. 2.4: Schemat przetwornika Flash [4]

Przetwornik sukcesywnej aproksymacji

Przetwornik z sukcesywną aproksymacją (ang. SAR – Successive Approximation Re-
gister) należy do rodziny kompensacyjnych. Porównuje on wartości napięcia wejściowego
z napięciem porównania wytworzonym za pomocą wewnętrznego przetwornika C/A w ite-
racyjnym procesie zarządzanym przez układ sterujący. Algorytm działa na zasadzie wy-
szukiwania binarnego, tzn. polega na włączaniu kolejnych bitów słowa, poczynając od
najwyższego bitu (MSB), aż do osiągnięcia ostatniego bitu (LSB). W przypadku kiedy
napięcie wejściowe będzie mniejsze od napięcia porównania, to dany bit słowa jest rese-
towany; w przeciwnym razie pozostawiana jest wartość „1”. Następnie wykonywana jest
kolejna iteracja algorytmu. Tak wytworzone słowo jest reprezentacją cyfrową napięcia
wejściowego. Ze względu na iteracyjny charakter pracy przetwornika, jego częstotliwość
próbkowania jest zależna od długości słowa, szybkości pracy przetwornika C/A, kompara-
tora i układu sterującego. Mimo tego, są one uważane za najbardziej uniwersalne, będąc
średnimi zarówno w prędkości jak i dokładności.

Rys. 2.5: Schemat przetwornika SAR [4]

11

Dawid Najda

Przetwornik podwójnie całkujący

Metoda podwójnego całkowania (ang. Dual Slope) jest jednym z najdokładniejszych
sposobów na pomiar wartości analogowej. Należy ona do metod pośrednich. W pierw-
szej części, do elementu całkującego doprowadzone jest napięcie mierzone. Całkowanie
tego napięcia trwa ustalony czas (najczęściej 20 ms). W drugiej fazie do wejścia elementu
całkującego dołączone jest napięcie odniesienia o biegunowości przeciwnej do wejścia. W
czasie rozładowywania, układ zlicza impulsy zegara. Kiedy napięcie wyjściowe z całko-
wacza osiągnie wartość zero, układ kończy zliczanie impulsów. Znając czas ładowania,
czas rozładowania, oraz napięcie rozładowujące, z prostej proporcji wyliczane jest napię-
cie wejściowe. Bardziej zaawansowane konstrukcje posiadają napięcia odniesienia o obu
polaryzacjach lub nawet różnych wartościach (np. 10x) dla danej polaryzacji. Pozwala to
przyspieszyć rozładowywanie układu całkującego. Ze względu na użycie kładu całkują-
cego, zegarów i innych elementów bazujących na upływie czasu, dokładność przetwornika
jest uzyskana kosztem częstotliwości przetwarzania.

Rys. 2.6: Schemat przetwornika Dual Slope [4]

Przetwornik Sigma-Delta

Topologia ta jest jedną z najbardziej skomplikowanych [10]. Napięcie wejściowe jest
podane na element całkujący, którego wyjście jest porównywane do jakiegoś niezerowego
napięcia granicznego. Po przekroczeniu tego progu, załącza się bramka, która powoduje
pomniejszenie napięcia wejściowego o napięcie odniesienia. Zakładając, że napięcie wej-
ściowe zawsze będzie mniejsze od odniesienia, powoduje to zmianę polaryzacji oraz po-
czątek rozładowywania całkowacza. Wyjście bramki stanowi sygnał cyfrowy – ciąg bitów
będący modulacją gęstości impulsów (ang. PDM – Pulse-Density Modulation). Jest ona
koncepcyjnie zbliżona do modulacji szerokością impulsów (ang. PWM – Pulse-Width Mod-
ulation), jednak nie ma stałego okresu. Następnie zlicza się w ustalonym okresie czasu
ilość bitów w stanie wysokim. Ta ilość w stosunku do ilości wszystkich bitów jest propor-

12

Rozdział 2. Analiza tematu

cjonalna do stosunku napięcia wejściowego do napięcia odniesienia. Z prostej proporcji
można wyznaczyć wartość napięcia na wejściu. Przetworniki tego typu, ze względu na
element całkujący uśredniający wpływ zakłóceń, oferują nieosiągalną dla innych precy-
zję, przy zachowaniu względnie wysokich częstotliwości. Niesie to jednak ze sobą koszty
produkcji.

Rys. 2.7: Schemat przetwornika ΣΔ [4]. Symulacja

Przetwornik napięcia na czas

Metoda „napięcie na czas” (ang. Ramp-Compare) polega na generowaniu napięcia piło-
kształtnego o przebiegu 0÷Uref lub ±Uref a następnie wprowadzeniu go razem z napięciem
mierzonym na wejście komparatora. W ten sposób otrzymujemy ciąg bitów reprezentujący
modulację szerokością impulsów (ang. PWM – Pulse-Width Modulation). Wystarczy z po-
mocą szybkiego zegara zmierzyć jaka część okresu składa się z bitów w stanie wysokim lub
niskim, a następnie z prostej proporcji wyznaczyć napięcie wejściowe. Do zalet tego typu
przetwornika należy bardzo nieskomplikowana konstrukcja; do wad zaś duża zależność
od precyzji przebiegu piłokształtnego, który w najprostszym przypadku jest wytwarzany
przez prosty element całkujący, na który bardzo duży wpływ może mieć np. temperatura.
Z tego powodu zamiast analogowego generatora, można zastosować przetwornik C/A, któ-
rego napięcie wyjściowe wzrasta wraz z przebiegiem zegara.

Rys. 2.8: Schemat przetwornika Ramp-Compare [4]

13

https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0l3AWAnC1b0DZwCZoHYBWAgDgLgO0gTKPGJAIcgYFMBaARg4CgB3EDggQhsYbAKEDiwyNwDGE4R2kjsSlcxjxI6XeiixIHA3B79saqcIvWE9Wf0HWxA7PVHjZHDJpHF74BgBlALaYbIATq7uLsTMHlChsgBKIJxYYEFp3iAIkAHMebmJmtAE3ADmqtZx1SJIWJrc3sJE4m70PvH+AiAFJQO+AGYAhgA2AM4sUM1ZXX6dLh3gfYNrTakEPgySW8wEeI0ioSJlp4ylRtypnCGUzOnucInGxjIlZdwIHEggGHYLEB4DjtHrGYh8RLLeIA2RVJwif6KepHWQjOrYJFgKiI4S-C5JbQDDhhbjo+KxCniX4cRicRgksLEyFsLYiHLxDncABu2RCYnotypAyKbDA0Eyg0+VSFOEFIOYmV8aORancljVq1p2QZ4WJpNSYAo7IyxuU73EjPiZ1wBJg5UcGTcuQBApmtMY2OsWJBuN6XloYEOfrAKkxShm-CN7RyXpNkfAOOwsaTtQc4GNyYywazCejIZzSNkAElwDnYzm0wZGA7chqkUJ3EXIY2-IVXc6A4Vass2oDjJ4GC2ew069ZR+nW+GXe408Put3OY15-Gg1hcykBBksjk8v1Re9SuVaftjcgsH3qFgB4la3sdq1tueZqWCLt38Jn0eh-w361dtsf4JvM3wXmeXK-mezyXhBDDgWB4hXjMADKaRsrmsobokoyTNM8TcAA9gIEAuIUOj0MQ0A-D8qDEJkHKGEYUICHgMyhlIIAAGLGA8n7ZCAABqBFjAALiMFQsNwQA

Dawid Najda

Przetwornik napięcie-częstotliwość

Metoda „napięcie na częstotliwość” (ang. Voltage-to-Frequency) wykorzystuje prze-
twornik napięcia na częstotliwość (VFC). Jest to oscylator, którego częstotliwość jest li-
niowo proporcjonalna do napięcia sterującego. Impulsy są następnie zliczane w jakimś
okresie czasu i przeliczane na napięcie na podstawie charakterystyki F(U). Ten typ prze-
twornika jest monotoniczny, wolny od brakujących kodów, całkuje szum i może zużywać
bardzo mało energii. Jest również bardzo przydatny w zastosowaniach telemetrycznych,
ponieważ VFC, który jest mały, tani i zużywa niewiele energii, można zamontować na
obiekcie doświadczalnym i komunikować się z licznikiem za pomocą łącza telemetrycz-
nego.

Rys. 2.9: Schemat przetwornika Voltage-to-Frequency [4]

14

Rozdział 2. Analiza tematu

2.3.4 Budowa przetworników cyfrowo-analogowych

Istnieje kilka podstawowych typów, które różnią się zasadą działania oraz osiągami.
Często wykorzystują one metody analogiczne do przetworników A/C [4].

Przetwornik z modulatorem szerokości impulsów

Przetwornik działa dzięki szeroko znanej metodzie, polegającej na zmianie wypełnienia
sygnału – jest nią wspomniane wcześniej PWM. Modulacja szerokości impulsów jest naj-
częściej wykonywana poprzez przełączanie tranzystorów pomiędzy stanem przewodzenia
a stanem zaporowym. Kontrola takiego procesu jest też bardzo prosta w implementacji,
sterownik musi tylko w odpowiednim momencie włączać lub wyłączać elementy kluczu-
jące. W stanie zaporowym natężenie prądu jest zerowe, zaś w stanie przewodzenia spadek
napięcia jest bardzo niewielki, dlatego straty praktycznie nie występują. Przez prostotę
realizacji oraz bardzo wysoką wydajność, jest to metoda często stosowana do regulacji
nie tyle napięcia, co mocy. Ze względu na pracę przerywaną, najlepiej działa w połą-
czeniu z odbiornikami które z natury są inercyjne: silniki, wentylatory, pompy (moment
bezwładności), żarówki, grzałki (bezwładność cieplna), zasilacze impulsowe (prąd w dła-
wiku). Przy wystarczająco wysokiej częstotliwości przełączania, może jednak obsługiwać
sterowanie mocą w układach uznawanych za statyczne, np. oświetlenie LEDowe. W za-
stosowaniach bardziej „typowych” dla C/A – czyli wytwarzanie precyzyjnego napięcia –
oprócz wysokiej częstotliwości przełączania wymagane są analogowe filtry dolnoprzepu-
stowe w celu wygładzenia przebiegu.

Rys. 2.10: Schemat przetwornika PWM

Przetwornik z modulatorem gęstości impulsów

Przetwornik tego typu bazuje na metodzie PDM (ang. Pulse-Density Modulation). Jest
on odpowiednikiem przetwornika A/C ΣΔ. Działanie jest podobne do PWM, oferuje jednak
mniejsze zakłócenia na wyjściu w zamian za zwiększenie częstotliwości przełączania, a
więc ewentualnych strat mocy. Wynika to z tego, że PWM ma stały okres i wszystkie bity

15

Dawid Najda

w stanie wysokim lub niskim są w takim okresie zgrupowane razem.

Przetwornik ważony dwójkowo

Przetwornik ważony binarnie (ang. binary-weighted) może być zbudowany na kilka
sposobów. Mają one jednak wspólną cechę – dla każdego bitu słowa zawiera pewien zestaw
elementów, które są dobrane tak, że każdy ma w węźle sumacyjnym dwa razy większą wagę
od poprzedniego, zaczynając od najniższego bitu. Istnieje kilka wariantów, różniących się
implementacją:

1. Napięcie odniesienia podane jest na zestaw rezystorów o podwajających się warto-
ściach (tak więc prąd maleje dwukrotnie). Każdy z nich może być dołączony lub
nie do wspólnego punktu. Sumaryczny prąd jest następnie zamieniany na napię-
cie. Opcjonalnie zamiast rezystorów można zastosować odpowiednio wyskalowane
źródła prądowe.

2. Zamiast źródeł prądowych można wykorzystać kondensatory. Po naładowaniu na-
pięciem odniesienia, wybrane z nich są przełączane do masy, co skutkuje pojemno-
ściowym dzielnikiem napięcia.

3. Jedno źródło prądowe zasila zespół oporników połączony szeregowo, przy czym
każdy może być indywidualnie zwarty – suma spadków napięć daje bezpośrednio
wyjście.

4. Zamiast rezystorów o wartościach podwajających się, wykorzystano tzw. drabinkę
R-2R. Ze względu na szczególną strukturę, prąd płynący do każdej kolejnej odnogi
staje się dwukrotnie mniejszy. Zależnie od ułożenia, otrzymujemy wyjście napięciowe
na zasadzie dzielnika oporowego, lub po zsumowaniu odpowiednich odnóg, wyjście
prądowe, zamieniane na napięcie.

Jest to jedna z najszybszych metod konwersji, jednak wadą jest niska dokładność ze
względu na trudność w wyprodukowaniu komponentów o precyzyjnych wartościach. Wa-
riant drabinkowy częściowo pozwala zapobiec temu problemowi. Oporniki o tym samym
rzędzie wielkości są dużo łatwiejsze do dokładnego wyprodukowania, a potrzeba ich jedy-
nie dwa razy więcej niż w podstawowej topologii. Wersja z kondensatorami jest używana w
przetwornikach A/C SAR, gdzie szybkie rozładowanie nie jest problemem, oraz ze względu
na brak potrzeby dodatkowych układów sample and hold. Dodatkowo, na jednym układzie
wykonuje się i konwersję A/C i C/A, co znacznie upraszcza strukturę.

16

Rozdział 2. Analiza tematu

Rys. 2.11: Schemat przetwornika ważonego dwójkowo, rezystorowy [4]

Rys. 2.12: Schemat przetwornika ważonego dwójkowo, kondensatorowy [4]

Rys. 2.13: Schemat przetwornika ważonego dwójkowo, napięciowy [4]

17

Dawid Najda

Rys. 2.14: Schemat przetwornika ważonego dwójkowo, drabinka R-2R [4]

Przetwornik cykliczny

Przetwornik cykliczny, zwany też przetwornikiem sukcesywnej aproksymacji, jest od-
powiednikiem przetwornika A/C SAR. Nazwa bierze się ze względu na to, że bity podawane
są pojedynczo, a więc posiada on jeden element kluczujący. Zależnie czy bity podawane
są od najniższego czy najwyższego, wymagane są lekkie zmiany, natomiast zasada działa-
nia jest ta sama. Przetwornik działa na zasadzie pętli dodatniego sprzężenia zwrotnego.
Zależnie od wartości bitu, jedno z wejść sumatora jest podłączane do napięcia odniesienia
lub masy, przepuszczane przez odpowiednie wzmocnienie, wraca do drugiego wejścia su-
matora i proces powtarza się, dodając napięcie ustawione przez kolejny bit. W przypadku
kolejności LSB→ MSB, wzmocnienie powinno wynosić 0.5; w przeciwnym przypadku, jest
ono równe 2 [4]. Jak łatwo się domyślić, w praktyce rozpoczęcie od najniższego bitu bę-
dzie dawać bardziej dokładne rezultaty, ze względu na to, że najbardziej znaczący bit
nie będzie wielokrotnie przechodził przez pętlę, przy okazji akumulując błąd. Mnożenie
napięcia odniesienia przez 0.5 i dodawanie gwarantuje też, że wynik zawsze znajdzie się
w przedziale 0 ÷ Uref . Mnożenie przez 2 wymaga albo późniejszego przeskalowania, albo
odpowiedniego pomniejszenia napięcia odniesienia (co znów powoduje niedokładności).

Rys. 2.15: Schemat przetwornika cyklicznego [4]

18

Rozdział 2. Analiza tematu

Przetwornik termometryczny

Przetwornik termometryczny jest odpowiednikiem przetwornika A/C Flash. Zawiera
on tyle zestawów elementów ile możliwych wartości. Mogą to być rezystory, źródła napię-
ciowe lub źródła prądowe o tej samej wartości. Wartość binarna jest przeliczona na kod
unarny. W przypadku źródeł napięciowych (np. oporowy dzielnik napięcia), wybierane
jest najwyższe i odpowiada ono bezpośrednio wyjściu. W przypadku źródeł prądowych
(np. zbiór równoległych identycznych rezystorów) powoduje włączenie dokładnie takiej
ilości elementów jaka jest podana w słowie, zaś później prąd zamieniany jest na napięcie.
Architektura tego typu jest szybka i najdokładniejsza ze wszystkich. Niestety kosztem są
duże wymogi pod względem ilości komponentów, co ogranicza rozdzielczość lub wymaga
procesu produkcji układów scalonych wysokiej skali integracji (ang. high-density IC).

Rys. 2.16: Schemat przetwornika termometrycznego, napięciowy [4]

Rys. 2.17: Schemat przetwornika termometrycznego, prądowy [4]

Przetwornik hybrydowy

Przetworniki hybrydowe, jak nazwa wskazuje, łączą wcześniejsze metody w jednym
urządzeniu. Większość obecnie produkowanych układów jest właśnie tego typu, ze względu

19

Dawid Najda

na łączenie pożądanych cech (niski koszt, wysoka częstotliwość, dobra precyzja). Jednym
z przykładów jest przetwornik „segmentowy”, który łączy metodę termometryczną na
najwyższych bitach, dla zwiększonej precyzji, z metodą ważoną dwójkowo dla niższych
bitów, w celu zmniejszenia ilości potrzebnych komponentów.

2.4 Komunikacja z peryferiami

Częścią praktycznie każdego bardziej skomplikowanego układu cyfrowego jest proce-
sor, który steruje pracą całości bądź części układu. Procesor musi mieć możliwość komu-
nikacji z każdą istotniejszą częścią takiego układu.

Istnieją dwa podejścia do podłączenia urządzeń do procesora:

• ciasna integracja: urządzenie ma swój dedykowany interfejs i staje się w pewnym
sensie częścią specyfikacji procesora (np. dedykowane instrukcje czy specjalne reje-
stry procesora do obsługi danego urządzenia)

• luźna integracja: urządzenie jest podłączone do procesora przez standardową szynę
(zazwyczaj współdzieloną z innymi urządzeniami) i jest widoczne dla procesora za
pomocą zwykłych instrukcji dostępu do pamięci — pewna część fizycznej przestrzeni
adresowej jest wydzielona dla urządzenia i odpowiada ono na instrukcje procesora,
które piszą bądź czytają ten obszar; podejście takie nazywa się MMIO (memory-
mapped I/O)

Ciasna integracja jest używana rzadko (najczęściej gdy projektujemy jednocześnie pro-
cesor i jego urządzenia peryferyjne) i w przypadku procesorów ogólnego przeznaczenia
używa się wyłącznie luźnej integracji.

Do podłączania zewnętrznych modułów najczęściej wykorzystywane są ustandaryzo-
wane protokoły komunikacyjne, których obsługa jest często zaimplementowana w proce-
sorach za pomocą wyżej wymienionych integracji. Kilka takich najpopularniejszych pro-
tokołów jest wymienionych poniżej.

2.4.1 Układ UART

Uniwersalny asynchroniczny nadajnik-odbiornik (ang. Universal Asynchronous Receiver-
Transmitter) to interfejs do asynchronicznej komunikacji szeregowej, w którym można
konfigurować format danych i prędkość transmisji. UART pobiera bajty danych i przesyła
poszczególne bity w sposób sekwencyjny, od najmniej do najbardziej znaczącego, otoczone
bitami startu i stopu, dzięki czemu kanał komunikacyjny zapewnia precyzyjne taktowanie.
W miejscu docelowym drugi UART ponownie składa bity w kompletne bajty. Każdy UART
zawiera rejestr przesuwny, który jest podstawową metodą konwersji pomiędzy formami
szeregowymi i równoległymi [30]. Transmisję informacji złączem szeregowym inicjuje bit

20

Rozdział 2. Analiza tematu

startowy (logiczne zero). W dalszej kolejności przesłana zostaje informacja w postaci 7, 8
lub 9 kolejnych bitów (w zależności od ustalonej konfiguracji urządzenia). Za zakończenie
transmisji odpowiedzialny jest bit stopu (logiczna jedynka). Całość tworzy tzw. ramkę
UART, która zawiera w sobie kompletną przesyłaną informację.

2.4.2 Magistrala I2C

I2C lub IIC (ang. Inter-Integrated Circuit) to synchroniczna magistrala komunika-
cyjna, opracowana w 1982 roku przez firmę Philips Semiconductors. Jest szeroko stoso-
wana do podłączania układów peryferyjnych o niższej prędkości do procesorów i mikro-
kontrolerów w komunikacji wewnątrzpłytowej na małe odległości. Jest to protokół typu
master-slave, co oznacza, że jedno urządzenie kontrolujące (master) komunikuje się z
jednym lub wieloma urządzeniami podrzędnymi (slaves).

I2C do transmisji wykorzystuje dwie dwukierunkowe linie w topologii magistrali: SDA
– linia danych (ang. Serial DAta) i SCL – linia zegara (ang. Serial CLock). Obie linie
są na stałe podłączone do źródła zasilania poprzez rezystory podciągające (ang. pull-
up). Wszystkie nadajniki są typu otwarty kolektor lub otwarty dren, co powoduje, że
logiczne zero jest dominujące. I2C używa logiki dodatniej, a więc stan niski na magistrali
odpowiada „0” logicznemu, natomiast stan wysoki „1” logicznej [35].

I2C jest magistralą zorientowaną bajtowo, a więc bity grupowane są po 8. Dane są
wysyłane w kolejności od najbardziej znaczącego bitu do najmniej znaczącego. Po prze-
słaniu 8 bitów w jednym kierunku, przesyłany jest dodatkowy bit potwierdzenia odebrania
danych ACK (lub NACK w przypadku braku potwierdzenia) w kierunku przeciwnym.

Pierwszym bajtem jest zawsze nadawany przez urządzenie master adres urządzenia
slave, który oprócz 7 bitów właściwego adresu zawiera bit kierunku transmisji na najniższej
pozycji. Wartość „0” tego bitu oznacza transmisję od mastera do slave’a (zapis), podczas
gdy wartość „1” kierunek przeciwny (odczyt). Po pierwszym bajcie przesyłane zostają
dane.

2.4.3 Interfejs SPI

SPI (ang. Serial Peripheral Interface) – szeregowy interfejs urządzeń peryferyjnych.
Jeden z najczęściej używanych interfejsów komunikacyjnych pomiędzy systemami mikro-
procesorowymi a układami peryferyjnymi.

Komunikacja poprzez SPI odbywa się synchronicznie za pomocą 3 linii:

• MOSI (ang. master output slave input) – dane dla układu peryferyjnego,
• MISO (ang. master input slave output) – dane z układu peryferyjnego,
• SCLK (ang. serial clock) – sygnał zegarowy (taktujący).

21

Dawid Najda

Do aktywacji wybranego układu peryferyjnego służy dodatkowo linia CS (ang. Chip
Select — wybór układu podrzędnego) lub adresacja układów. W drugim przypadku, w
przesyłanej wiadomości zawarty musi być adres urządzenia, które po jego rozpoznaniu
przyjmuje pozostałe bajty. Adresowanie układów wykorzystywane jest szczególnie pod-
czas pracy z rozbudowanymi systemami, których poszczególne części można programować
niezależnie, także po zamontowaniu na płytce [6].

Aby rozpocząć komunikację, master najpierw wybiera urządzenie podrzędne. Podczas
każdego cyklu zegara SPI następuje transmisja pojedynczego bitu w trybie pełnego du-
pleksu. Master wysyła bit na linii MOSI, podczas gdy slave wysyła bit na linii MISO, a
następnie każdy odczytuje odpowiadający im bit przychodzący. Ta kolejność jest zacho-
wywana nawet wtedy, gdy zamierzony jest tylko jednokierunkowy transfer danych.

2.5 Połączenie między urządzeniami

Do komunikacji pomiędzy samodzielnymi urządzeniami, głównie ze względu na ty-
powo dużo większy dystans niż między peryferiami, stosuje się inne metody. Wymagają
one adekwatnej mocy, szczególnie przy wyższych prędkościach przesyłu, oraz odpowied-
nich zabezpieczeń przed błędami związanymi z możliwymi zakłóceniami. Kilka możliwych
rozwiązań zostało omówionych poniżej, zarówno przewodowych jak i zdalnych.

2.5.1 Łącze RS-232

RS-232 to standard szeregowej transmisji danych między urządzeniami elektronicz-
nymi. Opisuje sposób połączenia urządzeń końcowych danych (np. komputer) oraz urzą-
dzeń komunikacji danych (np. modem). Określa nazwy styków złącza oraz przypisane im
sygnały, a także specyfikację elektryczną obwodów wewnętrznych. Standard ten definiuje
normy wtyczek i przewodów portów szeregowych typu COM.

RS-232 jest magistralą komunikacyjną przeznaczoną do szeregowej transmisji danych.
Najbardziej popularna wersja tego standardu, RS-232C pozwala na transfer na odległość
nieprzekraczającą 15 m z szybkością maksymalną 20 kbit

s .

2.5.2 Łącze RS-485

RS-485 składa się z różnicowego (symetrycznego) nadajnika, dwuprzewodowego toru
transmisyjnego i różnicowego odbiornika. Umożliwia podłączenie wielu nadajników i od-
biorników (maksymalnie do 32). Ograniczenie wynika z ograniczeń energetycznych na-
dajnika. Najczęściej stosowaną topologią dla takich standardów jest topologia magistrali.
Zasięg to około 1200 m. Prędkości transmisji jakie można uzyskać to 35 Mbit

s (do 10 m),
i 100 kbit

s (do 1200 m). RS-485 jest najczęściej stosowanym interfejsem przewodowym w

22

Rozdział 2. Analiza tematu

sieciach przemysłowych – z prostego powodu, ponieważ przesył różnicowy zapobiega wpły-
wowi zakłóceń zewnętrznych na transmisję danych. Na bazie tego interfejsu opracowano
wiele protokołów komunikacyjnych.

2.5.3 Magistrala USB

USB, uniwersalna magistrala szeregowa (ang. Universal Serial Bus) -– komputerowe
złącze komunikacyjne (tak zwany port lub interfejs) zastępujące stare porty szeregowe i
porty równoległe.

Jedną z ważniejszych cech portu USB jest zgodność ze standardem Plug and Play.
Architektura USB składa się z serwera (hosta), wielu portów USB oraz urządzeń do nich
podłączonych. Host USB może zarządzać wieloma kontrolerami, a każdy kontroler może
udostępniać jeden lub więcej portów USB. Urządzenia można z sobą łączyć, tworząc sieć
o topologii drzewa wykorzystując do tego koncentratory USB [33].

Współcześnie podstawowy wariant oferuje przepustowość rzędu 480 Mbit
s . Transmisja

danych przez port odbywa się w trybie half duplex na jednej parze przewodów. Istnieją
nowsze, szybsze warianty, jednak nie wszystkie porty i nie wszystkie urządzenia je wspie-
rają.

2.5.4 Standard Ethernet

Ethernet to rodzina technologii przewodowych sieci komputerowych, powszechnie sto-
sowanych do połączeń internetowych. Został on wprowadzony na rynek w 1980 roku;
od tego czasu został udoskonalony, aby obsługiwać wyższe przepływności, większą liczbę
węzłów i większe odległości łączy, ale zachowuje znaczną kompatybilność wsteczną.

Klasyczne sieci Ethernet mają cztery cechy wspólne. Są to: format ramki, parame-
try czasowe, podstawowe reguły obowiązujące przy ich projektowaniu, proces transmisji.
Standardem jest izolacja o wytrzymałości minimum 250 V AC między kablem a kom-
puterem. Kabel jest z założenia odizolowany galwanicznie; to znaczy moduły służące do
obsługi Ethernetu posiadają zintegrowane swego rodzaju mini transformatory na każdej
parze żył. Przez to można łączyć układy o różnicy potencjałów nawet rzędu kilku kV.

Stacje Ethernet komunikują się, wysyłając sobie nawzajem pakiety danych: bloki da-
nych indywidualnie wysyłane i dostarczane. Adaptery są dostarczane z zaprogramowa-
nym globalnie unikalnym 48-bitowym adresem MAC, dzięki czemu każda stacja Ethernet
ma unikalny adres. Adresy te służą do określenia zarówno miejsca docelowego, jak i źró-
dła każdego pakietu danych. Ethernet ustanawia połączenia (link-layer), które można
zdefiniować przy użyciu adresu docelowego oraz źródłowego. Po odebraniu transmisji od-
biornik na podstawie adresu docelowego określa, czy transmisja ma znaczenie dla stacji,
czy też powinna zostać zignorowana. Interfejs sieciowy zwykle nie akceptuje pakietów
adresowanych do innych stacji Ethernet.

23

Dawid Najda

Warstwa fizyczna Ethernet ewoluowała przez znaczny okres czasu i obejmuje fizyczne
interfejsy koncentryczne, skrętkowe i światłowodowe o prędkościach od 1 Mbit

s do 400 Gbit
s .

Najczęściej stosowane formy to 10BASE-T, 100BASE-TX i 1000BASE-T. Wszystkie trzy
wykorzystują skrętkę komputerową i złącza modułowe 8P8C. Działają odpowiednio z szyb-
kością 10 Mbit

s , 100 Mbit
s i 1 Gbit

s .
Datagram nazywany jest pakietem lub ramką. Pakiet służy do opisu całej jednostki

transmisyjnej i zawiera nagłówek, ogranicznik początkowy ramki (ang. SFD – start

frame delimiter) i przedłużenie nośnika (ang. carrier extension) -– dopełnienie za
ramką do 512 B. Ramka rozpoczyna się nagłówkiem ramki zawierającym źródłowy i doce-
lowy adres MAC. Środkowa część ramki składa się z danych użytkowych, w tym wszelkich
nagłówków innych protokołów (na przykład protokołu internetowego) znajdujących się w
ramce. Ramka kończy się 32-bitowym cyklicznym kodem nadmiarowym, który służy do
wykrywania uszkodzeń przesyłanych danych.

2.5.5 Standard Wi-Fi

Wi-Fi to rodzina protokołów sieci bezprzewodowych, które są powszechnie używane w
sieciach lokalnych urządzeń i dostępie do Internetu, umożliwiając wymianę danych pobli-
skich urządzeń cyfrowych za pomocą fal radiowych. Wi-Fi jest zaprojektowane tak, aby
bezproblemowo współpracować ze swoim przewodowym odpowiednikiem, Ethernetem.

Pasma radiowe Wi-Fi najlepiej sprawdzają się w przypadku korzystania „w zasięgu
wzroku”. Wiele typowych przeszkód, takich jak ściany, filary, urządzenia gospodarstwa
domowego itp., może znacznie zmniejszyć zasięg, ale pomaga to również zminimalizować
zakłócenia między różnymi sieciami w zatłoczonym otoczeniu. Zasięg wynosi od około
20 m do nawet 150 m. Oferuje prędkość przesyłu do 100 Mbit

s , lecz przy większych dystan-
sach, prędkość przesyłu zazwyczaj spada.

Standard zapewnia kilka różnych zakresów częstotliwości radiowych do użytku w ko-
munikacji Wi-Fi: pasma 900 MHz, 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz i 60 GHz.
Najczęściej używane są 2.4 GHz i 5 GHz.

Dane są zorganizowane w ramki, które są bardzo podobne do ramek Ethernet w war-
stwie łącza danych, ale z dodatkowymi polami adresowymi. Adresy MAC są używane jako
adresy sieciowe do kierowania w sieci LAN.

2.5.6 Standard Bluetooth

Bluetooth to standard technologii bezprzewodowej krótkiego zasięgu, używany do wy-
miany danych między urządzeniami stacjonarnymi i mobilnymi na małe odległości oraz
do budowania sieci osobistych (PAN). Korzysta z fal radiowych w paśmie częstotliwości
2.4 GHz i oferuje zasięg przeważnie do 10 m oraz prędkość przesyłu do około 50 Mbit

s .

24

Rozdział 2. Analiza tematu

2.6 Wybór sposobu komunikacji

Każdy sposób połączenia urządzenia z komputerem narzuca też jakiś specyficzny for-
mat komunikacji czy wiadomości. Jeśli zostanie użyty protokół internetowy (czy w postaci
Ethernetu czy Wi-Fi), należy rozważyć sposób przesyłania wiadomości i danych między
budowanym urządzeniem a urządzeniem zarządzającym. Kilka możliwych rozwiązań jest
przedstawionych poniżej.

2.6.1 Gniazda (sockets)

Gniazdo sieciowe to struktura oprogramowania, która służy jako punkt końcowy do
wysyłania i odbierania danych w sieci. Ze względu na standaryzację protokołów TCP/IP w
rozwoju Internetu, termin gniazdo sieciowe jest najczęściej używany w kontekście zestawu
protokołów internetowych i dlatego często nazywany jest także gniazdem internetowym.
W tym kontekście gniazdo jest zewnętrznie identyfikowane przez inne hosty na podstawie
adresu gniazda, który jest triadą protokołu transportowego, adresu IP i numeru portu.

Interfejs programowania aplikacji dla stosu protokołów sieciowych tworzy tzw. „uchwyt”
(ang. handle) dla każdego gniazda utworzonego przez aplikację, powszechnie nazywany
deskryptorem gniazda. W systemach operacyjnych typu Unix ten deskryptor jest rodza-
jem deskryptora pliku. Jest on przechowywany przez proces aplikacji i używany przy
każdej operacji odczytu i zapisu w kanale komunikacyjnym.

W momencie tworzenia za pomocą API gniazdo sieciowe jest powiązane z kombinacją
typu protokołu sieciowego, który będzie używany do transmisji, adresu sieciowego hosta i
numeru portu. Porty służą jako adresowalny zewnętrznie (z sieci) komponent lokalizacji,
dzięki czemu inne hosty mogą nawiązywać połączenia.

Aplikacja może komunikować się ze zdalnym procesem poprzez wymianę danych pro-
tokołem TCP/IP, znając kombinację typu protokołu, adresu IP i numeru portu. Ta kom-
binacja jest często nazywana adresem gniazda. Jest to skierowany w stronę sieci uchwyt
dostępu do gniazda sieciowego. Zdalny proces ustanawia gniazdo sieciowe we własnej in-
stancji stosu protokołów i wykorzystuje interfejs API sieci do łączenia się z aplikacją,
przedstawiając własny adres gniazda do wykorzystania przez aplikację.

Interfejs, którego programy używają do komunikacji ze stosem protokołów przy użyciu
gniazd sieciowych, nazywany jest socket API . Tworzenie programów użytkowych korzy-
stających z tego interfejsu nazywa się programowaniem gniazdowym lub programowaniem
sieciowym. Interfejsy API gniazd internetowych są zwykle oparte na standardzie gniazd
Berkeley. W standardzie gniazd Berkeley gniazda są formą deskryptora pliku, ze względu
na filozofię Uniksa, że ”wszystko jest plikiem”.

Gniazdo strumieniowe zapewnia niezawodny, sekwencyjny i unikalny przepływ bez-
błędnych danych bez granic rekordów, z dobrze zdefiniowanymi mechanizmami tworzenia
i niszczenia połączeń oraz raportowania błędów. W Internecie gniazda strumieniowe są

25

Dawid Najda

zwykle implementowane przy użyciu protokołu TCP, dzięki czemu aplikacje mogą działać
w dowolnej sieci przy użyciu protokołu TCP/IP.

Programowanie bezpośrednio na gniazdach oferuje praktycznie nieograniczone moż-
liwości, natomiast jednocześnie niskopoziomowość jest wadą, ze względu na konieczność
samodzielnej obsługi bardzo wielu problemów. Po stronie klienta: najpierw trzeba otwo-
rzyć gniazdo (i pamiętać o zamknięciu przed wyjściem z programu). Następnie połączyć
się z serwerem, używając odpowiedniej struktury przechowującej adres. Po tym możemy
wysyłać i odbierać dane. Po stronie serwera: najpierw trzeba zarejestrować usługę w sys-
temie oraz przejść w tryb nasłuchiwania. Następnie trwa oczekiwanie na połączenie, które
finalnie zostaje odebrane. Tworzy to nowe gniazdo, przez które można wysyłać i odbierać
dane (oczywiście tu również należy je później zamknąć). Obsługa działania, sprawdzanie
poprawności, błędów (errno), szykowanie struktur danych, wszystko wymaga od pro-
gramisty użycia sporej liczby funkcji [32]. Niektóre kody oznaczają błąd nieodwracalny,
niektóre można obejść, zaś jeszcze inne są wręcz oczekiwane w pewnych sytuacjach. Różne
ustawienia powodują pojawianie się nowych kodów błędów lub zmianę zachowań już ist-
niejących. Dodatkowo, całkowicie po stronie użytkownika leży wybór i implementacja
metody sprawdzenia, czy dane wysłane i otrzymane zostały całe, czy jeszcze nie, czy
może nigdy już nie dotrą; dobór limitów czasowych i wiele, wiele innych.

Z wymienionych przyczyn, bardzo pożądany jest wyższy poziom abstrakcji, który po-
zwoli na zachowanie funkcjonalności przy jednoczesnym ukryciu wszystkich tych niepo-
żądanych, zarówno przez programistę jak i użytkownika, cech i wymogów.

2.6.2 WebSocket

WebSocket jest protokołem komunikacyjnym, zapewniającym dwukierunkowy kanał
wymiany danych poprzez jedno połączenie TCP. Zarówno WebSocket jak i HTTP są zloka-
lizowane na 7 warstwie w modelu OSI i zależą od TCP na warstwie 4. Pomimo faktu, że
są one różne, WebSocket został zaprojektowany do działania na portach przypisanych do
HTTP. Aby osiągnąć kompatybilność z HTTP, handshake WebSocket’u wykorzystuje nagłó-
wek HTTP Upgrade, aby przełączyć komunikację.

Protokół WebSocket umożliwia interakcję między przeglądarką internetową (lub in-
nym klientem), a serwerem sieciowym przy niższym obciążeniu niż alternatywne rozwią-
zania pół-dupleksowe, takie jak np. odpytywanie HTTP (ang. polling), ułatwiając przy
tym znacznie przesyłanie danych w czasie rzeczywistym do i z serwera. Jest to możliwe
dzięki zapewnieniu znormalizowanego sposobu wysyłania przez serwer treści do klienta
bez uprzedniego żądania klienta i umożliwienia przesyłania komunikatów tam i z powro-
tem przy zachowaniu aktywnego połączenia. W ten sposób między klientem, a serwerem
może odbywać się dwukierunkowa wymiana danych [36].

Niestety wymaga jednocześnie zwykłego serwera HTTP [11], dodatkowo pozostaje pro-

26

Rozdział 2. Analiza tematu

blem obsługi wielu równoległych połączeń do ograniczonego sprzętu.

2.6.3 Serwer HTTP

Po dokładniejszym przeanalizowaniu problemu, stało się jasne, iż połączenie w pełni
dwukierunkowe, oferowane przez WebSocket, jest zbędne. Wystarczający jest prosty ser-
wer HTTP [37].

Serwer WWW to oprogramowanie komputerowe (i sprzęt na którym ono pracuje), który
przetwarza żądania za pośrednictwem protokołu HTTP (protokół sieciowy stworzony do
dystrybucji treści internetowych) lub jego bezpiecznego wariantu HTTPS. Klient użyt-
kownika – zwykle przeglądarka internetowa – inicjuje komunikację, wysyłając żądanie
dotyczące strony internetowej lub innego zasobu za pomocą protokołu HTTP, a serwer
odpowiada treścią tego zasobu lub komunikatem o błędzie. Serwer WWW może również
akceptować i przechowywać zasoby wysyłane od klienta użytkownika, jeśli jest do tego
skonfigurowany.

Program serwera WWW zwykle wykonuje kilka zadań: odczytuje i stosuje ustawienia
znajdujące się w konfiguracji; rozpoczyna nasłuchiwanie połączeń/żądań klientów; zarzą-
dza połączeniami klientów; odbiera żądania: czyta i weryfikuje żądania HTTP, wykonuje
tłumaczenie ścieżki URL wraz z różnymi kontrolami bezpieczeństwa, identyfikuje znane
nagłówki i odczytuje ich wartości; wykonuje lub odrzuca żądaną metodę HTTP: zarządza
komunikacją z programami zewnętrznymi/modułami wewnętrznymi służącymi do genero-
wania treści dynamicznych, sprawdzając dostępność, rozpoczęcie i ostatecznie zatrzymanie
wykonywania; odpowiada na żądania klientów wysyłając odpowiednie wiadomości HTTP
(np. żądane zasoby lub komunikaty o błędach); opcjonalnie zapisuje komunikaty procesu
o wykrytych anomaliach lub innych znaczących zdarzeniach (np. w żądaniach klientów
lub w jego wewnętrznym funkcjonowaniu) [3].

Serwery obsługują kilka różnych tzw. metod: GET, POST, PUT, HEAD, DELETE, PATCH,
OPTIONS, CONNECT, TRACE. Najpopularniejsze są jednak GET i POST, szczególnie w przeglą-
darkach internetowych.

Metoda żądania GET pobiera informacje z serwera. W ramach żądania do adresu URL
można dodać query string, czyli jakieś dane w postaci par {nazwa, wartość}. Ich długość
jest jednak ograniczona (maksymalna URL długość 2048 znaków) i muszą być w specjalny
sposób (application/x-www-form-urlencoded) kodowane i dekodowane.

Z założenia metoda POST żąda, aby serwer WWW zaakceptował dane zawarte w tre-
ści żądania, w celu ich przetworzenia lub przechowania. Jest często używany podczas
przesyłania pliku lub wypełnionego formularza. W ramach żądania POST w treści żąda-
nia można wysłać do serwera względnie dowolną ilość danych, o typie albo zgodnym
z danymi metody powyżej, lub dowolnymi danymi binarnymi, za pomocą kodowania
multipart/form-data. Pole nagłówka w żądaniu zwykle wskazuje typ kodowania tre-

27

Dawid Najda

ści wiadomości.

2.7 Koncepcja pracy

Koncepcja urządzenia przedstawiona jest na schemacie 2.18 – ogólny diagram poka-
zujący komponenty i połączenia między nimi.

Budowane urządzenie jest wyposażone w cztery wejścia analogowe: trzy napięciowe i
jedno prądowe, oraz dwa wyjścia analogowe: jedno napięciowe i jedno prądowe. Oprócz
tego, dostępne są również cztery wejścia i cztery wyjścia cyfrowe. Wszystkie porty ana-
logowe obsługują zarówno dodatnie jak i ujemne wartości sygnałów. Wejścia cyfrowe
działają z napięciem dodatnim 3.3 V - 24 V oraz są zabezpieczone przeciwko napięciom
ujemnym. Wyjścia cyfrowe działają z napięciem do 50 V oraz są zabezpieczone przeciwko
napięciom ujemnym i zbyt wysokim prądom. Wszystkie porty powinny móc działać (mie-
rzyć, generować) z częstotliwością przynajmniej 50 kHz. Całość zarządzana jest poprzez
mikrokontroler ESP32, z którym można się komunikować za pomocą komputera PC. Do
operacji analogowych zostaną wykorzystane zewnętrzne chipy, które są podłączone do
mikrokontrolera. Porty analogowe wyposażone są w złącza BNC, zaś porty cyfrowe w roz-
łączalne listwy zaciskowe. Wejścia analogowe mają do wyboru trzy możliwe przedziały.
Do pomiarów wykorzystany jest przetwornik typu SAR ze względu na ich uniwersalność,
tzn. przeciętne zarówno częstotliwość i rozdzielczość, oraz względną prostotę konstrukcji.
Do wytwarzania napięcia wykorzystano przetwornik typu resistive string, czyli termo-
metryczny, ze względu na bardzo szybkie działanie, niską nieliniowość różniczkową oraz
gwarantowaną monotoniczność.

Rys. 2.18: Ogólny diagram urządzenia

28

Rozdział 2. Analiza tematu

2.7.1 Zadawanie zadań urządzeniu

Ponieważ jedyne bezpośrednie sterowanie urządzeniem jest możliwe poprzez tworzenie
i wgrywanie kodu w języku C++ – co wymaga jego dobrej znajomości oraz znajomości
samego sprzętu; odpowiedniego komputera, oprogramowania, kompilatora, środowiska,
bibliotek i połączenia fizycznego; jest czasochłonne i podatne na błędy – musiała zostać
stworzona inna metoda sterowania urządzeniem, w celu wykonywania pożądanych pomia-
rów, ustawiania wyjść, itd.

Rozwiązaniem może być stworzenie własnego, prostego języka, zawierającego pole-
cenia służące do sterowania podzespołami urządzenia, oraz opcjonalnie różne instrukcje
pomocnicze, służące do zmiany przepływu sterowania, takie jak: skok, warunek, pętla.
Oczywiście wymaga to również stworzenia interpretera, który będzie odczytywał instruk-
cje i wykonywał odpowiedni kod maszynowy obsługujący urządzenie [28].

Format binarny

Można założyć, że każde wyrażenie zajmuje pewną stałą liczbę bajtów, tzn. jakiś
rozmiar operacji (np. 1 bajt), jakiś rozmiar argumentu (np. 4 bajty) itd. Zadanie takie
może potem być wykonane bezpośrednio w czasie odczytu, ponieważ instrukcje są już
w formacie łatwo zrozumiałym dla procesora. Napisanie go jest jednak niewygodne bez
dedykowanego kompilatora, szczególnie w językach wysokopoziomowych, np. ze względu
na typowanie słabe, wymóg różnych operacji bitowych czy odpowiedniej końcówkowości
– kolejności bajtów w słowach. Ten format jest jednakże użyteczny jako reprezentacja w
pamięci.

Format tekstowy

Drugim sposobem jest zapis instrukcji i argumentów w postaci zwykłych ciągów zna-
ków. Instrukcje najlepiej kilkuliterowe (opcode, mnemoniki, akronimy) oraz argumenty
(głównie liczby) przekazywane w zapisie dziesiętnym (ewentualnie szesnastkowym lub
ósemkowym). Format ten jest bardzo prosty do pisania zarówno ręcznego jak i bardziej
zautomatyzowanego. Wymaga jednak parsera, który zamieni postać tekstową na repre-
zentację w pamięci (drzewo składniowe, abstract syntax tree, AST) [28].

29

Dawid Najda

30

Rozdział 3

Konstrukcja budowanego urządzenia

3.1 Użyte podzespoły

3.1.1 Mikrokontroler

Układ jest budowany w oparciu o mikrokontroler ESP32, ze względu na jego stosunkowo
niski koszt, szeroki wachlarz możliwości (32-bitowy 2-rdzeniowy procesor; 4 MiB pamięci
Flash i 520 KiB pamięci RAM; liczne GPIO; protokoły oraz peryferia: UART, I2C, SPI, I2S;
wsparcie Wi-Fi i Bluetooth), oraz niskie zużycie energii (ok. 0.5 W). Na rysunku 3.1
przedstawiono jedną z wielu dostępnych płytek ewaluacyjnych. Oprócz samego modułu
ESP32, posiada ona wbudowany regulator napięcia, port USB oraz konwerter USB-UART.
Pod metalową pokrywą modułu kryją się m.in. właściwy procesor, pamięć Flash, oscylator
kwarcowy oraz wyprowadzona jest antena. Na rysunku 3.2 pokazany jest uproszczony
schemat blokowy mikrokontrolera: zawarte moduły, peryferia, obsługiwane protokoły i
inne.

Rys. 3.1: Płytka ewaluacyjna z chipem ESP-WROOM-32

31

Dawid Najda

Rys. 3.2: Funkcyjny diagram blokowy procesora

3.1.2 Przetworniki A/C i C/A

W pracy został wykorzystany przetwornik analogowo-cyfrowy MCP3204 firmy Micro-
chip [21]. Posiada on 4 wejścia analogowe, które mogą być używane niezależnie, lub jako
wejścia różnicowe parami. Umożliwia próbkowanie z częstotliwością do 100 ksps oraz roz-
dzielczością 12 bitów. Zużywa bardzo mało energii, tj. w czasie pracy przy napięciu 5 V
pobiera mniej niż 1 mA. Komunikuje się z mikroprocesorem za pomocą szybkiego pro-
tokołu szeregowego – SPI. Układ jest wyposażony w wejście napięcia odniesienia, które
można prawie dowolnie wybrać.

Rys. 3.3: Schemat blokowy przetwornika MCP3204 [21]

Do konwersji w drugą stronę, użyty został przetwornik cyfrowo-analogowy MCP4922,
również firmy Microchip. Posiada on 2 wyjścia analogowe. Umożliwia generację z często-

32

Rozdział 3. Konstrukcja budowanego urządzenia

tliwością do 1 Msps oraz oferuje również 12 bitów precyzji. Układ jest wyposażony w dwa
wejścia napięcia odniesienia, osobne dla każdego z wyjść [22].

Rys. 3.4: Schemat blokowy przetwornika MCP4922 [22]

3.1.3 Wzmacniacze

Przetwornik A/C posiada wbudowane kondensatory przechowujące próbki. Wymaga
przez to wzmacniacza, który dostarczy potrzebny prąd ładowania. W tym celu wyko-
rzystano układ MCP6024 firmy Microchip, ze względu na identyczne zasilanie jak sam
przetwornik oraz wysokie wzmocnienie AV ol ≈ 120 dB ≡ 1 MV

V oraz niskie napięcie nie-
zrównoważenia (ang. input offset voltage) VOS < 250 µV [23].

Jako wzmacniacz wejść napięciowych umieszczony za dzielnikami, wykorzystany zo-
stał układ LT1014DIN firmy Texas Instruments. Tak jak poprzednio wymieniony, ma on
wysokie wzmocnienie AV ol > 1 MV

V oraz niskie napięcie niezrównoważenia VOS < 250 µV
[19].

Do pomiaru prądu wymagany jest wzmacniacz pomiarowy (instrumentalny), najle-
piej z zewnętrznie regulowanym wzmocnieniem, w celu uniknięcia przełączania boczni-
ków. Został do tego wykorzystany układ INA122P firmy Texas Instruments. Ma on ni-
skie napięcie niezrównoważenia wejścia VOS < 250 µV oraz niski prąd polaryzacji wejścia
Ib < 25 nA. Wzmocnienie ustawia się podłączanym zewnętrznie rezystorem, zgodnie ze

33

Dawid Najda

wzorem G = 5 + 200 kΩ
Rg

[12].
W budowie wyjść wykorzystano wzmacniacze LM2902N firmy Texas Instruments [18],

ze względu na ich dobry stosunek jakości do ceny. W celu zwiększenia mocy wyjść, zasto-
sowano pary komplementarnych tranzystorów bipolarnych BD139 i BD140.

Napięcia odniesienia: 2.048 V, 4.096 V, −2.048 V i −4.096 V zostały wytworzone przy
pomocy układów generujących precyzyjne napięcie: LM4040A20 i LM4040A41 firmy Te-
xas Instruments [17]. Ich wyjścia są buforowane za pomocą dwóch wzmacniaczy MCP607
firmy Microchip, wybranych ze względu na wysokie wzmocnienie AV ol ≈ 120 dB ≡ 1 MV

V

oraz niskie napięcie niezrównoważenia wejścia VOS < 250 µV [24]. Jeden wzmacniacz jest
zasilany napięciem 0–5 V, zaś drugi – przeciwną polaryzacją.

3.1.4 Inne układy

Jako bufor wejść cyfrowych został wykorzystany układ SN74HC125 firmy Texas In-
struments. Potrafi on przyjąć aż 20 mA na każde wejście w celu utrzymania właściwego
przedziału napięcia wejściowego, co w połączeniu z odpowiednimi rezystorami pozwala na
znaczny przedział wartości napięcia równoważnego za stanem wysokim [31]. Do sterowania
wyjściami cyfrowymi użyto generycznej macierzy Darlingtonów XD2003 firmy Xinluda, w
połączeniu z rezystorami limitującymi prąd.

Do selekcji dzielników wejść napięciowych oraz wzmocnienia wejścia prądowego wy-
korzystano przekaźniki V23100 V4005-A010 firmy TE Connectivity. Do sterowania prze-
kaźnikami wykorzystano macierze Darlingtonów ULN2803A firmy STMicroelectronics [34].
Aby podłączyć ww. macierze do mikrokontrolera, użyto ekspanderów MCP23008 firmy
Microchip, ze względu na komunikację protokołem I2C oraz kompatybilne zasilanie [20].

3.1.5 Schematy ideowe torów

Poniżej przedstawione są diagramy blokowe i schematy ideowe wszystkich torów wej-
ściowych i wyjściowych. Przy projektowaniu zostały uwzględnione zalecenia producentów
poszczególnych układów oraz ogólnych „dobrych praktyk projektowania”, np. opisanych
w dokumentach firmy Analog Devices [13][14]. Pełny schemat ideowy urządzenia umiesz-
czony jest w dodatku B.

Tory cyfrowe wejściowe

Tory cyfrowe są bardzo proste w budowie oraz nie wymagają żadnego pośrednika,
tzn. są bezpośrednio połączone do GPIO mikrokontrolera. Tor wejściowy wykorzystuje
układ buforujący. Posiada on wbudowane zabezpieczenie przeciwko napięciu wejściowemu
o wartościach przekraczających napięcie zasilania.

34

Rozdział 3. Konstrukcja budowanego urządzenia

Rys. 3.5: Diagram blokowy toru cyfrowego wejściowego

Rys. 3.6: Schemat ideowy toru cyfrowego wejściowego

Tory cyfrowe wyjściowe

Tor wyjściowy to po prostu wzmocnienie sygnału z mikrokontrolera za pomocą tran-
zystora bipolarnego w układzie Darlington.

Rys. 3.7: Diagram blokowy toru cyfrowego wyjściowego

Rys. 3.8: Schemat ideowy toru cyfrowego wyjściowego

35

Dawid Najda

Tory analogowe wejściowe

Tory wejściowe, zarówno napięciowe (rysunek 3.9) jak i prądowy (rysunek 3.11), są
zbliżone w działaniu. Jedyna różnica jest taka, że tory napięciowe wykorzystują na wejściu
nastawny dzielnik napięcia oraz wtórnik napięciowy, zaś tor prądowy jest wyposażony w
bocznik i wzmacniacz pomiarowy z regulowanym wzmocnieniem. Następnie w obu typach
sygnał zostaje przesunięty z przedziału 0 ± 4.096 V na 2.048 ± 2.048 V. Kolejny wtórnik
napięciowy przenosi go na wejścia przetwornika.

Rys. 3.9: Diagram blokowy toru napięciowego wejściowego

Rys. 3.10: Schemat ideowy toru napięciowego wejściowego

Rys. 3.11: Diagram blokowy toru prądowego wejściowego

36

Rozdział 3. Konstrukcja budowanego urządzenia

Rys. 3.12: Schemat ideowy toru prądowego wejściowego

Tory analogowe wyjściowe

Oba tory wyjściowe są na początku identyczne – napięcie z przetwornika (0÷4.096 V)
jest zsumowane z ujemnym napięciem odniesienia, w celu osiągnięcia symetrycznego prze-
działu ±1.024 V. Dla toru napięciowego trafia ono bezpośrednio na główny wzmacniacz,
który jednocześnie odpowiada za przeskalowanie go oraz za sterowanie elementami mocy,
które są połączone z gniazdem BNC.

Rys. 3.13: Diagram blokowy toru napięciowego wyjściowego

Rys. 3.14: Diagram blokowy toru napięciowego wyjściowego

Wyjście prądowe jest zbudowane jako źródło prądowe sterowane napięciowo. Składa
się ono z dwóch wzmacniaczy. Jeden odpowiada za sterowanie elementami mocy, zaś
drugi mierzy spadek na boczniku (co „oblicza” prąd), a następnie odpowiednio koryguje

37

Dawid Najda

główny wzmacniacz, w celu uzyskania charakterystyki prądowej zależnej tylko od napięcia
wejściowego, nie zaś od rezystancji podłączonej do portu. Zbudowane zostało też drugie
wyjście prądowe, z bocznikiem o większym oporze. Pozwala ono wytworzyć mniejszy, lecz
dużo precyzyjniejszy prąd. Jest ono jednak sterowane jednocześnie z głównym źródłem,
tym samym wyjściem przetwornika.

Rys. 3.15: Schemat ideowy toru prądowego wyjściowego

Rys. 3.16: Schemat ideowy toru analogowy prądowego wyjściowego

3.2 Połączenie z komputerem

Komunikacja między urządzeniem a komputerem mogła być zaimplementowana na
wiele sposobów. Rozwiązania klasyczne - RS232/RS485 – niestety są przestarzałe i niewy-
godne w użyciu (grubość kabla, dystans, szybkość przesyłu).

Początkowo rozważane było połączenie przez USB, jednak ma ono wady: wymaga kon-
wertera USB-UART po stronie kontrolera oraz emulatora portu COM po stronie komputera.
Do tego wymaga pośrednika odpowiadającego za odizolowanie elektryczne układu od
komputera, co jest jednym z założeń projektu. Możliwe są dwie topologie, gdzie układ
odpowiedzialny za izolację jest umieszczony przed lub za konwerterem. Izolator dla UART
jest dużo prostszy ze względu na fakt, że dana linia przesyła informacje tylko w jedną

38

Rozdział 3. Konstrukcja budowanego urządzenia

stronę, do czego wystarczy prosty optoizolator. USB wymaga dwukierunkowego przesyłu
na obu żyłach, co komplikuje budowę. Z drugiej strony, izolator umieszczony za konwer-
terem powoduje konieczność zasilania konwertera z komputera, a więc naraża port lub
komputer na uszkodzenie w przypadku uszkodzenia nawet samego przewodu.

Lepszym rozwiązaniem jest komunikacja przez port Ethernet. Jego porty posiadają
układy izolujące po obu stronach, więc nawet w przypadku uszkodzenia przewodu, kom-
puter nie jest narażony. Przewód może być podpięty bezpośrednio między urządzeniami
(crossover), gdzie umożliwia transmisję na sporą odległość, lub też poprzez sieć - mode-
m/router itd. - co pozwala na całkowicie zdalną pracę z urządzeniem, z dowolnej odległo-
ści. Jest fabrycznie wspierany przez prawie każdy komputer oraz łatwy do podłączenia
do mikrokontrolera - wymaga tylko gotowego modułu z portem Ethernet. Dodatkowo
pozwala też w standardach 10BASE-T i 100BASE-T na bardzo proste przesłanie zasilania
po dwóch nieużywanych parach w przewodzie. Umożliwiają to splittery, odłączające te
pary od wtyczki RJ45 dla złącza zasilającego.

Na rysunku 3.17 przedstawiono kilka dostępnych komercyjnie układów. Mimo iż wy-
glądają podobnie, różnią się działaniem. Wszystkie nazwy odnoszą się zarówno do samych
układów, jak i gotowych płytek, na których się znajdują. ENC28J60 i WN5500 komunikują
się poprzez protokół SPI. Oznacza to jednocześnie, że muszą same implementować stos
TCP/IP oraz warstwę MAC. Moduł LAN8720 i DP83848 łączą się za pomocą interfejsu RMII
(modyfikacja Media-Independent Interface, oznaczona Reduced, wykorzystuje 10 przewo-
dów, w porównianiu do 18 dla MII). Jest on dedykowany do łączenia warstwy PHY i MAC.
Oznacza to, że moduły te implementują tylko warstwę fizyczną, zaś zadaniem mikrokon-
trolera jest zarządzanie warstwą MAC.

PHY to warstwa fizyczna – najniższa w stosie OSI. Implementuje ją każde urządzenie
łączące się w jakikolwiek fizyczny sposób, zarówno przewodowy jak i bezprzewodowy.
Warstwa MAC (ang. Medium Access Control) to druga w stosie OSI, m.in. odpowiada za
fragmentację wiadomości i pomaga w korekcji błędów.

Zostało przetestowane działanie dwóch modułów. ENC28J60 nie jest bezpośrednio
wspierany przez Espressif, tylko wymaga dodatkowych kodów, do tego posiada długą
listę errata. Udało się go uruchomić, jednak jego praca jest bardzo niestabilna i przeważnie
przestawał działać po upływie maksymalnie kilku minut.

Moduł LAN8720 co prawda zużywa więcej wejść mikrokontrolera, jednak to on okazał
się rozwiązaniem działającym stabilnie, o łatwym połączeniu i implementacji w oprogra-
mowaniu, bez problemu komunikując się z innymi urządzeniami, np. routerem. Wystar-
czyło skonfigurować sygnał zegara jako idący od procesora do modułu. Mimo długich
połączeń prototypu, nie było problemu ani z zasilaniem, ani z zakłóceniami sygnałów.
Wadą okazała się jednak prędkość przesyłu, jak wynikło z testów, osiągająca szczytowo
3.5 kB/s gdzie najwolniejszy standard Ethernet to 10 MB/s, zaś moduł według specyfi-
kacji powinien obsługiwać nawet 100 MB/s. Być może takie parametry są osiągalne na

39

Dawid Najda

dedykowanej płytce drukowanej.

(a) ENC28J60 (b) LAN8720

(c) WN5500 (d) DP83848

Rys. 3.17: Przykładowe moduły Ethernet

Ostatecznie wybranym rozwiązaniem okazało się połączenie za pomocą wbudowanego
w ESP32 komponentu Wi-Fi, które nie dość, że zaoferowało dużo większą przepustowość i
kompletne pozbycie mechanicznego połączenia z komputerem, ale dodatkowo pozwoliło na
zwolnienie jednego z bardzo pożądanych interfejsów SPI oraz innych GPIO. Niestety wadą
połączenia bezprzewodowego jest możliwość wystąpienia np. niespodziewanych opóźnień
czy chwilowych wstrzymań transferu, co może spowodować nieaktualność danych lub w
skrajnym przypadku nawet przepełnienie bufora próbek. Dodatkowo jakość przesyłu bę-
dzie dużo bardziej zależna od dystansu niż przy połączeniu przewodowym.

3.3 Oprogramowanie

Program dzieli się na kilka części, przedstawionych niżej. Do działania wykorzystane
są różne klasy i biblioteki, które pozwalają w pewnym stopniu ukryć niskopoziomową
obsługę za różnymi interfejsami. Stworzone zostały biblioteki do obsługi przetwornika A/C
(dodatek A.2.1), przetwornika C/A (dodatek A.2.2), ekspanderów GPIO (dodatek A.2.3).

Fragmenty kodu ważniejszych części wraz z opisami są przedstawione w dodatku A –
Dokumentacji technicznej.

3.3.1 Inicjalizacja układu

Schemat blokowy inicjalizacji został przedstawiony na rysunku 3.18. Na samym po-
czątku zostają skonfigurowane: protokół Wi-Fi, interfejsy SPI do sterowania przetworni-
kami, interfejs I2C do sterowania ekspanderami oraz odpowiednie piny GPIO dla wyjść i
wejść cyfrowych. Później następuje inicjalizacja podzespołów (dodatek A.56): utworzenie
transakcji SPI, inicjalizacja przetworników (utworzenie jako urządzeń SPI), rezerwacja
magistral, inicjalizacja ekspanderów, wyzerowanie wyjść analogowych i cyfrowych oraz

40

Rozdział 3. Konstrukcja budowanego urządzenia

wyłączenie przekaźników wejść analogowych. Finalnie tworzony jest zegar (ang. timer),
odpowiadający za synchronizację wewnątrz programu, oraz uruchamiany jest wątek In-
terpretera odpowiedzialny za wykonywanie zadań i obsługę całego sprzętu wejściowego i
wyjściowego. Przygotowany jest również bufor na dane oraz zmienne służące do komuni-
kacji między wątkami. Po tym wszystkim uruchamiany jest serwer HTTP odpowiedzialny
za komunikację ze światem.

Rys. 3.18: Schemat blokowy inicjalizacji wszystkich komponentów

3.3.2 Praca ciągła

Po skończeniu inicjalizacji urządzenie wykonuje dwa główne zadania. Jedno to Inter-
preter, czyli wątek odpowiedzialny za wykonywanie wgrywanych zadań. Jest on na stałe

41

Dawid Najda

przypięty do drugiego rdzenia (CPU1, APP CPU), ma najwyższy priorytet i nie dopuszcza
niczego innego poza przerwaniami. Z tego powodu task watchdog, odpowiedzialny m.in.
za monitorowanie zużycia procesora i czasu przydzielanego zadaniom, jest wyłączony na
tym rdzeniu.

Na pierwszym rdzeniu (CPU0, PRO CPU) wykonywana jest cała reszta zadań: serwer
HTTP, obsługa stosu TCP/IP, serwera DNS, komunikacji przez Wi-Fi, oraz różnych innych
wewnętrznych funkcji wymaganych do działania. Są one wszystkie zarządzane przez sys-
tem czasu rzeczywistego – zmodyfikowany FreeRTOS.

Serwer odpowiada za całą komunikację ze światem. Obsługuje kilka adresów, będących
jednocześnie punktami końcowymi API, które są opisane poniżej.

3.4 Punkty końcowe API

Serwer HTTP obsługuje dokładnie cztery adresy, z czego trzy to punkty końcowe API,
zaś jeden odpowiada za przesył obrazka favicon.ico, który jest automatycznie żądany
przez np. przeglądarki i został dodany w celu uniknięcia błędów 404.

Rys. 3.19: Obrazek favicon.ico przedstawiający symbol przetwornika

3.4.1 Powitanie, pomoc, ogólne informacje

Pierwszy punkt końcowy znajduje się pod domyślnym, głównym adresem: / i używa
metody GET. Zwraca on stały obiekt JSON, który zawiera podstawowe informacje, jak data
kompilacji, wersja kompilatora, wersję środowiska Espressif, adresy API, listę instrukcji
wraz z ich opisami, argumentami i zwracanymi danymi, przykładowy generator, listę
rodzajów przebiegów, przedziały i rozdzielczość wejść/wyjść analogowych i inne.

3.4.2 Wgrywanie zadania do urządzenia

Punkt końcowy odpowiedzialny za wgrywanie zadania i generatorów znajduje się pod
adresem /settings i używa metody POST.

Ustawienia są przesyłane w treści zapytania jako obiekt zakodowany w formacie JSON
(ang. JavaScript Object Notation). Jest to otwarty standardowy format plików i format
wymiany danych, który wykorzystuje tekst czytelny dla człowieka do przechowywania
i przesyłania wartości, które mogą być liczbami, ciągami znaków, wartościami logicz-
nymi, tablicami (będącymi listą wartości) lub obiektami (tablicami tzw. asocjacyjnymi,
to znaczy składającymi się z par {nazwa, wartość}). Jest to powszechny format danych

42

Rozdział 3. Konstrukcja budowanego urządzenia

o różnorodnych zastosowaniach w elektronicznej wymianie danych, w tym w aplikacjach
internetowych z serwerami.

Na ustawienia składają się (wymagane) zadanie do wykonania oraz (opcjonalna) lista
generatorów przebiegów DDS (ang. Direct Digital Synthesis, Bezpośrednia synteza cyfrowa)
dla wyjść analogowych. Obie części są dokładniej opisane niżej. Kiedy użytkownik wgrywa
ustawienia, są one sprawdzane i parsowane (proces jest dokładniej opisany w dalszych
sekcjach). Jeśli nie ma żadnych błędów, zostają one przeniesione i zapisane na ‘stałe’
(tzn. do momentu ich zmiany lub utraty zasilania). Pozwala to powtarzać pomiary bez
konieczności wgrywania na nowo tego samego programu.

3.4.3 Wykonywanie zadania i odbiór danych

Punkt końcowy odpowiedzialny za faktyczne wykonanie zadania: sterowanie wyjściami,
mierzenie wejść i przesyłanie wyników do użytkownika znajduje się pod adresem /io i
używa metody GET. Przyjmuje on jeden parametr w query – tb, określający rozmiar w
bajtach pomiarów czasu. Przyjmuje wartości od 0 do 8, gdzie 0 oznacza, że czas wykonania
pomiaru nie jest zapisywany, zaś 8 zwraca pełną 64-bitową liczbę z timera synchronizu-
jącego. Przeważnie 4 lub nawet 2 bajty wystarczą, szczególnie dla krótkich zadań lub w
przypadku, gdy użytkownik będzie we własnym programie pilnował ewentualnego prze-
kroczenia zakresu tych wartości.

W momencie żądania wykonania zadania wątek Interpretera jest powiadamiany, prze-
chodzi przez inicjalizację (reset wyjść, reset obiektu zadania, reset i start zegara) i zaczyna
pobierać po kolei komendy z zadania, wykonując odpowiedni kod w celu ich realizacji oraz
wstawiając zmierzone wartości do bufora. Wątek odpowiedzialny za serwer odczytuje dane
z bufora i wysyła je do klienta. Cały proces trwa aż do skończenia programu lub zerwania
połączenia.

Zamiast kodować zmierzone dane w celu bezpiecznego przesłania formatem JSON,
wybrana została bardziej prymitywna, lecz jednocześnie szybsza i prostsza w użyciu
metoda. Program odsyła surowe dane z nagłówkiem określającym typ zawartości jako
octet-stream w postaci ciągu bajtów. Jest to, zależnie od rodzaju odczytywanych da-
nych, liczba całkowita (ze znakiem lub bez) lub liczba zmiennoprzecinkowa oraz opcjonal-
nie obecny czas jako liczba całkowita o wybranej długości. Takie kodowanie pozwala też
wysyłać i odbierać dane fragmentami (co byłoby trudne w przypadku wiadomości JSON,
chyba że każdy fragment byłby kodowany osobno).

3.5 Parser i interpreter

Aby wykonać przesłane przez użytkownika zadanie, musi ono najpierw zostać odczy-
tane. Oczywiście można by to robić od razu w trakcie wykonywania, jednak ze względu

43

Dawid Najda

na wybrany format:

1. przetwarzanie tekstu nie należy do najszybszych, szczególnie na mikrokontrolerach,

2. zadanie w wersji sparsowanej powinno zająć mniej miejsca w pamięci niż surowy
tekst,

3. takie zadanie można wykonywać wielokrotnie, bez potrzeby kolejnego analizowania
przy każdym uruchomieniu.

Z tego względu zadanie jest zamienione na drzewo instrukcji w momencie przesłania, co
jednocześnie pozwala też wykryć błędy i poinformować użytkownika. Drzewo takie zostaje
zapisane w pamięci i może być wielokrotnie wykonywane, wymaga jedynie zresetowania
wskaźnika do obecnej instrukcji.

3.5.1 Zamiana tekstu na format binarny – parser zadania

Analizator składniowy lub parser to program dokonujący analizy składniowej danych
wejściowych w celu określenia ich struktury gramatycznej w związku z określoną gra-
matyką formalną. Analizator umożliwia przetworzenie tekstu czytelnego dla człowieka w
strukturę danych przydatną dla oprogramowania. Wynikiem analizy składni dokonywanej
przez parser najczęściej jest drzewo składniowe.

Dokładna budowa pomocniczych struktur oraz parsera opisana jest w dodatku A.2.5,
jednak zostanie pokrótce przedstawiona tutaj. Najpierw stworzono strukturę, która re-
prezentuje pojedynczą instrukcję, tzn. zawiera wykonywaną operację oraz opcjonalnie
port, którego ta operacja dotyczy i/lub dowolny argument w postaci liczby całkowitej
lub zmiennoprzecinkowej. Później powstała klasa przechowująca listę instrukcji – Scope
oraz klasa pozwalająca je powtarzać – Loop. Klasa Program zawiera jeden Scope z całym
zadaniem, a także implementuje parser. Parser najpierw tworzy stos Scope’ów, gdzie do
tego na górze stosu dopisywane są wyrażenia. W pętli odczytywane są kolejne instruk-
cje, dzielone następnie na operację i argumenty. Jeśli operacja to LOOP, odczytywana jest
pożądana ilość iteracji, nowa pętla zostaje utworzona i dodana do stosu. Jeśli operacja
to END, obecny Scope zostaje zamknięty i usunięty ze stosu, zaś kolejne instrukcje będą
dopisywane do poprzedniego, niższego poziomu. W pozostałych przypadkach, operacja
to instrukcja do sprzętu. Sprawdzana jest nazwa operacji, zapisywany jest odpowiedni
OPCode, sprawdzana jest wymagana liczba argumentów i zostają one odczytane. Jeśli nie
wystąpił żaden błąd, zadanie jest poprawne; zostaje zapisane w stałej części pamięci i
może zostać wykonane.

3.5.2 Interpreter zadań

Interpreter to program komputerowy wykonujący inne programy [28]. Jest kluczowym
elementem znacznej części implementacji języków skryptowych oraz języków kompilowa-

44

Rozdział 3. Konstrukcja budowanego urządzenia

nych do kodu bajtowego [5]. Schemat blokowy został przedstawiony na rysunku 3.20, zaś
dokładny opis kodu znajduje się w dodatku A.59. Wątek Interpretera oczekuje na sygnał
startu od serwera HTTP. Po otrzymaniu go, inicjalizuje porty i zegar. Następnie w pętli od-
czytuje instrukcje z zadania i je wykonuje, czekając na synchronizację jeśli tak zażądano.
Jeśli wystąpi błąd, klient rozłączy się lub zadanie zostanie skończone – ponownie ustawia
stan domyślny portów, sygnalizuje koniec pracy i wraca do oczekiwania na zadanie.

45

Dawid Najda

Rys. 3.20: Schemat blokowy interpretera

46

Rozdział 3. Konstrukcja budowanego urządzenia

3.6 Wykonywanie zadań

Zadanie to lista wyrażeń – komend wraz z ich argumentami. Każde wyrażenie kończy
się znakiem ;, zaś komenda i argumenty oddzielone są białymi znakami. Dla poprawienia
czytelności, w całym programie mogą być swobodnie dodawane kolejne białe znaki (np.
nowe linie, tabulacje), zarówno między argumentami jak i całymi wyrażeniami.

Wyrażenie może być bezpośrednią instrukcją do sprzętu lub służyć do zmiany prze-
pływu programu. Z kilku możliwości wspomnianych wcześniej, została zaimplementowana
tylko pętla, ze względu na jej prostotę. Pętla może zawierać kolejne wyrażenia, zarówno
instrukcje jak i kolejne pętle. Takie zagnieżdżenie pozwala na łatwe stworzenie wielokrot-
nie powtarzających się pomiarów, sekwencyjnych przełączeń, itp. Poniżej przedstawione
są dostępne wyrażenia wraz z ich funkcją.

3.6.1 Pętle

Deklaracja pętli składa się z dwóch wyrażeń – otwarcie, wraz z ilością iteracji, oraz
zamknięcie. Ilość otwarć i zamknięć w programie musi być taka sama.

1 LOOP <iterations (uint32)>;
2 [...]
3 END;

3.6.2 Instrukcje

Reszta wyrażeń to instrukcje. Są one podzielone na kilka kategorii, zależnie od peł-
nionej funkcji. Same kategorie nie mają jednak żadnego znaczenia technicznego.

Instrukcje pomocnicze

• No OPeration – wartość domyślna, nic nie robi, nie należy jej używać.
Składnia: NOP

• DELAY – opóźnienie, ustawia następny czas synchronizacji na podstawie poprzed-
niego.
Składnia: DELAY <microseconds (uint32)>

• GET TiMe – jeśli nie czeka na synchronizację, ustawia następny czas synchronizacji
na ‘teraz’.
Składnia: GETTM

47

Dawid Najda

• ReSeT TiMe – resetuje i restartuje zegar, tzn. pomiary czasowe odnoszą się do tego
momentu.
Składnia: RSTTM

Instrukcje do ustawiania wejść analogowych

• Analog Input ENable – łączy wejścia z dzielnikami i wzmacniaczami.
Składnia: AIEN

• Analog Input DISable – odłącza wejścia.
Składnia: AIDIS

• Analog Input RaNGe – ustawia przedział wartości portu wejściowego (wybiera dziel-
nik napięcia lub mnożnik wzmacniacza pomiarowego). Wyłączony/minimalny/śred-
ni/maksymalny.
Składnia: AIRNG <port (1|2|3|4)> <range (OFF|MIN|MED|MAX)>

Instrukcje do pomiarów wejść analogowych

• Analog Input ReaD Float – zwraca pomiar (wykonany podaną ilość razy i uśred-
niony) w jednostkach V, A jako 32-bitowa liczba zmiennoprzecinkowa (float). W
Składnia: AIRDF <port (1|2|3|4)> <repetitions>

• Analog Input ReaD Milli – zwraca pomiar (wykonany podaną ilość razy i uśred-
niony) w jednostkach mV, mA jako 32-bitowa liczba całkowita (int32). Wykonany
podaną ilość razy i uśredniony.
Składnia: AIRDM <port (1|2|3|4)> <repetitions>

• Analog Input ReaD Micro – zwraca pomiar (wykonany podaną ilość razy i uśred-
niony) w jednostkach µV, µA jako 32-bitowa liczba całkowita (int32). Wykonany
podaną ilość razy i uśredniony.
Składnia: AIRDU <port (1|2|3|4)> <repetitions>

Instrukcje do sterowania wyjść analogowych

• Analog Output VALue – wystawia na wyjście podaną wartość.
Składnia: AOVAL <port (1|2)> <voltage (float)>

• Analog Output GENerator – wystawia na wyjście wartość obliczoną przez generator
DDS.
Składnia: AOGEN <port (1|2)> <generator_idx (uint)>

48

Rozdział 3. Konstrukcja budowanego urządzenia

Instrukcje do pomiarów wejść cyfrowych

• Digital Inputs ReaD – zwraca stan pinów jako 4 bity w liczbie całkowitej (uint32).
Składnia: DIRD

Instrukcje do sterowania wyjść cyfrowych

• Digital Outputs WRite – bezpośrednio ustawia stan pinów.
Składnia: DOWR <state (uint4 hex/oct/dec)>

• Digital Outputs SET – załącza piny odpowiadające bitom w stanie wysokim (bitowy
OR).
Składnia: DOSET <state (uint4 hex/oct/dec)>

• Digital Outputs ReSeT – wyłącza piny odpowiadające bitom w stanie wysokim.
Składnia: DORST <state (uint4 hex/oct/dec)>

• Digital Outputs AND – wyłącza piny odpowiadające bitom w stanie niskim.
Składnia: DOAND <state (uint4 hex/oct/dec)>

• Digital Outputs XOR – wykonuje bitowo operację eXclusive OR.
Składnia: DOXOR <state (uint4 hex/oct/dec)>

Opis argumentów komend

Typ int oznacza liczbę całkowitą, z przedrostkiem u jest ona bez znaku (unsigned)
tj. bez wartości ujemnych. Dodatkowa liczba na końcu oznacza ilość bitów (a więc okre-
śla maksymalną wartość jaka może być podana). Typ float oznacza liczbę dziesiętną z
opcjonalnym ułamkiem, która będzie zapisana jako zmiennoprzecinkowa.

Przedział dla wejść analogowych jest podawany jako cztery możliwe słowa: OFF, MIN,
MED, MAX. OFF to oczywiście odłączenie wejścia - powoduje wyłączenie wszystkich przekaź-
ników. W przypadku wejść napięciowych MIN powoduje bezpośrednie przekazanie wejścia
na przetwornik, MED powoduje 10x pomniejszenie napięcia, zaś MAX to 100x pomniejszenie.
Oznacza to, że maksymalne mierzalne napięcia na wejściu to odpowiednio ±4 V, ±40 V
i ±400 V. W przypadku wejścia prądowego mierzony jest spadek napięcia na boczniku
1 Ω; MIN powoduje 1000x wzmocnienie, MED powoduje 100x wzmocnienie, zaś MAX to tylko
10x wzmocnienie. Oznacza to, że maksymalny prąd płynący przez wejście to odpowiednio
±4 mA, ±40 mA i ±400 mA.

3.7 Generator sygnałów

Oprócz programu, w ustawieniach można dołączyć dane opisujące wirtualne genera-
tory przebiegów. Generator to lista obiektów sygnałów, każdy taki obiekt zawiera para-

49

Dawid Najda

metry A – amplitudę (w woltach lub amperach) i S – obiekt poszczególnego sygnału.
Obiekt sygnału zawiera parametr WF – jego nazwę-kod oraz odpowiednie parametry
poszczególnych typów, opisane niżej. Podstawa czasowa to jedna mikrosekunda.

3.7.1 Typy przebiegów możliwych do użycia w generatorach

Istnieje kilka typów przebiegów, każdy w inny sposób oblicza wartości wyjściowe na
podstawie obecnego czasu.

Wartość stała

Określany w kodzie jako Const. Zwraca wartość 1 niezależnie od czasu. Parametry:
brak.

Impuls

Określany w kodzie jako Impulse. Zwraca wartość 1 dla czasu 0, 0 dla reszty. Para-
metry: brak.

Przebieg sinusoidalny

Określany w kodzie jako Sine. Zwraca wartość obliczoną za pomocą przybliżonej funk-
cji sinus. Parametry:

• T – okres w mikrosekundach (int32)

Przebieg prostokątny

Określany w kodzie jako Square. Zwraca wartość 1 jeśli czas wewnątrz okresu jest
mniejszy niż Duty, 0 w przeciwnym przypadku. Parametry:

• T – okres w mikrosekundach (int32)
• D – czas trwania stanu wysokiego (int32)

Przebieg trójkątny

Określany w kodzie jako Triangle. Przebieg jest symetryczny, zarówno w czasie jak i
wartościach. Zaczyna od zera i rośnie. Parametry:

• T – okres w mikrosekundach (int32)

Sygnał świergotowy

Określany w kodzie jako Chirp. Jest to funkcja sinusoidalna z częstotliwością zmie-
niającą się liniowo w czasie. Parametry:

• T – czas trwania fragmentu w mikrosekundach (int32)

50

Rozdział 3. Konstrukcja budowanego urządzenia

• FS – częstotliwość startowa (float)
• FD – zmiana częstotliwości (koniec − początek) (float)

Sygnał świergotowy logarytmiczny

Określany w kodzie jako ChirpLog. Jest to funkcja sinusoidalna z częstotliwością zmie-
niającą się wykładniczo w czasie, a więc liniowo w skali logarytmicznej. Parametry:

• T – czas trwania fragmentu w mikrosekundach (int32)
• FS – częstotliwość startowa (float)
• FR – stosunek częstotliwości (koniec

początek) (float)

Sygnał losowy

Określany w kodzie jako Random. Generuje wartości losowe rozłożone liniowo w prze-
dziale [−1, 1). Parametry: brak.

3.7.2 Modyfikatory przebiegów

Modyfikatory przebiegów również są klasą dziedziczącą z głównej klasy Signal, jednak
różnią się od poprzednich tym, że przyjmują one przynajmniej jeden inny sygnał jako
parametr.

Opóźnienie

Określany w kodzie jako Delay. Przesuwa w czasie dowolny inny sygnał. Parametry:
• D – czas przesunięcia w mikrosekundach (int32)
• S – obiekt sygnału

Wartość bezwzględna

Określany w kodzie jako Absolute. Zwraca wartość bezwzględną dowolnego innego
sygnału. Parametry:

• S – obiekt sygnału

Clamp / minmax

Określany w kodzie jako Clamp. Zwraca wartość dowolnego innego sygnału, chyba że
wykracza poza podaną wartość minimalną lub maksymalną – w takim przypadku zwraca
przekroczoną granicę. Parametry:

• L – dolna granica (float)
• H – górna granica (float)
• S – obiekt sygnału

51

Dawid Najda

Funkcja liniowa

Określany w kodzie jako LinearMap. Zwraca wartość dowolnego innego sygnału prze-
kształconą za pomocą funkcji liniowej y = A · x + B. Parametry:

• A – współczynnik kierunkowy (float)
• B – wyraz wolny (float)
• S – obiekt sygnału

Iloczyn sygnałów

Określany w kodzie jako Multiply. Generuje dwa podane sygnały i zwraca iloczyn ich
wartości. Parametry:

• S1 – obiekt sygnału 1
• S2 – obiekt sygnału 2

3.7.3 Opis przykładowych generatorów

Poniżej przedstawione są struktury JSON reprezentujące kilka generatorów, tworzących
różne przebiegi.

Obiekt ustawień generatora posiadającego jeden sygnał sinusoidalny o amplitudzie 1 V
i okresie 1000 µs.

1 [
2 {
3 "A": 1,
4 "S": {
5 "WF": "Sine",
6 "T": 1000
7 }
8 }
9]

Obiekt ustawień generatora imitującego działanie inwertera - przybliżenie sinusa za
pomocą dwóch sygnałów prostokątnych, o częstotliwości i wartości RMS równej zasilaniu
sieciowemu.

1 [
2 {
3 "A": 1,
4 "S": {

52

Rozdział 3. Konstrukcja budowanego urządzenia

5 "WF": "Square",
6 "T": 20000,
7 "D": 7100
8 }
9 },

10 {
11 "A": -1,
12 "S": {
13 "WF": "Delay",
14 "D": 10000,
15 "S": {
16 "WF": "Square",
17 "T": 20000,
18 "D": 7100
19 }
20 }
21 }
22]

3.8 Prototyp bloku wejść-wyjść analogowych i cyfro-
wych

Poniżej przedstawione jest zdjęcie zbudowanego urządzenia. Całość ma wymiary 31 cm
na 19 cm na 5.5 cm (32.5 cm na 20.5 cm na 5.5 cm uwzględniając zewnętrzne elementy złącz
wejść i wyjść). Do stworzenia układu została wykorzystana płytka uniwersalna, na której
umieszczono wszystkie komponenty. Po lewej stronie widać wejście zasilania ±12 V w po-
staci kostki elektrycznej. Obok znajdują się regulatory napięcia ±5 V oraz wzmacniacze
napięć odniesienia ±4.096 V i ±2.048 V. Pod nimi (w lewym dolnym rogu) umieszczony
jest mikrokontroler ESP32 na swojej płytce ewaluacyjnej. Obok niego znajdują się prze-
twornik A/C oraz wzmacniacz, następnie sumatory napięcia i kolejny wzmacniacz. Po
prawej stronie widać rząd przekaźników oraz sterujące nimi ekspandery i Darlingtony;
obok nich znajdują się dzielniki napięcia i wzmacniacz pomiarowy oraz finalnie gniazda
BNC. W górnej połowie płytki znajduje się przetwornik C/A, wzmacniacze oraz tranzy-
story mocy, tworzące wyjścia napięciowe i prądowe. W górnym lewym rogu umieszczone
zostały układy (bufory i Darlingtony) obsługujące porty cyfrowe, oraz gniazda na termi-
nale śrubowe stanowiące interfejs tychże. Ze względu na prototypową naturę budowanego
urządzenia, działanie wielu części układu jest kalibrowane za pomocą potencjometrów
wieloobrotowych.

53

Dawid Najda

Rys. 3.21: Zdjęcie zbudowanego prototypu urządzenia

54

Rozdział 4

Kalibracja i testy urządzenia

Do testów zostały w języku Python stworzone kody służące do wgrywania ustawień
i przetwarzania pomiarów, ze względu na jego prostotę i szybkość tworzenia. Urządzenie
najpierw zostało skalibrowane za pomocą kilku zadań (zostały ustawione potencjome-
try regulujące). Następnie zostały przeprowadzone trzy eksperymenty, mające na celu
potwierdzenie możliwości wykorzystania zbudowanego urządzenia.

Aby ułatwić obsługę, została napisana niewielka klasa reprezentująca urządzenie. Po-
zwala ona w zwięzły sposób wgrywać ustawienia, pobierać dane na żywo oraz zapisywać
i odczytywać pomiary w plikach za pomocą czterech metod.

1 import requests
2 import struct
3 import json
4

5 class IOBlock:
6 def __init__(self, addr="http://192.168.4.1"):
7 self.addr = addr
8

9 def settings(self, *, jsonstr=None, settings=None, task="",
generators=[]):↪→

10 if jsonstr is None:
11 if settings is None:
12 settings = {"task": task, "generators": generators}
13 jsonstr = json.dumps(settings)
14 response = requests.post(self.addr + "/settings", jsonstr)
15 return json.loads(response.content)
16

17 def get_iter(self, format, tb=0):

55

Dawid Najda

18 with requests.get(self.addr + "/io?tb=" + str(tb), stream=True)
as req:↪→

19 req.raise_for_status()
20 for bytes in

req.iter_content(chunk_size=struct.calcsize(format)):↪→

21 yield struct.unpack(format, bytes)
22

23 def write_file(self, fname, tb=0):
24 with requests.get(self.addr + "/io?tb=" + str(tb), stream=True)

as req:↪→

25 req.raise_for_status()
26 with open(fname, mode="wb") as fp:
27 for chunk in req.iter_content(chunk_size=None):
28 if chunk:
29 fp.write(chunk)
30

31 @staticmethod
32 def read_file_iter(fname, format):
33 with open(fname, mode="rb") as fp:
34 for tpl in struct.iter_unpack(format, fp.read()):
35 yield tpl

Listing 4.1: Klasa IOBlock upraszczająca obsługę urządzenia

Zadanie może być podane np. jako zmienna tekstowa lub odczyt z pliku, zaś generatory
to po prostu tablica obiektów. Jest jednak możliwość podania gotowego obiektu ustawień
lub nawet przygotowanego tekstu w formacie JSON.

4.1 Kalibracja wejść i wyjść

Najpierw zostały stworzone dwa mini-programy bazujące na przedstawionej wcześniej
klasie. Jeden służy do wgrywania ustawień, zaś drugi do odbierania danych. Na samym
początku należało ustawić potencjometry regulujące działanie wszystkich wejść i wyjść.
Do kalibracji urządzenia potrzebne są dane “na żywo”, dlatego strumień danych z urzą-
dzenia jest na bieżąco dzielony, konwertowany i wyświetlany w postaci liczbowej.

1 from IOBlock import IOBlock
2

3 iob = IOBlock()

56

Rozdział 4. Kalibracja i testy urządzenia

4 fp = open("program.prg", "r")
5

6 ret = iob.settings(task=fp.read())
7 print(ret)

Listing 4.2: Program służący do wgrywania ustawień do urządzenia

1 from IOBlock import IOBlock
2

3 iob = IOBlock()
4

5 # depends on received data
6 format = "<iI"
7 format = "<fI"
8 format = "<BxxxI"
9

10 for tpl in iob.get_iter(format, 4):
11 time = tpl[1]/1000000
12 data = tpl[0]
13 print("D:", data, "@:", time)

Listing 4.3: Program służący do odbierania pomiarów z urządzenia

4.1.1 Kalibracja wejść analogowych

Wejścia analogowe mają tylko jeden potencjometr, odpowiadający za ustawienie napięcia
(lub prądu) zera. Zarówno zadanie jak i sposób kalibracji są bardzo proste; wejście zo-
staje zwarte do masy i potencjometr jest przestawiany tak długo, aż wartości zwracane
przez urządzenie będą równe zero. Zadanie przez 60 sekund wykonuje pomiary 10 razy na
sekundę i zwraca odczytaną wartość. W razie potrzeby może być powtórzone lub prze-
rwane w dowolnym momencie. Dla wejścia prądowego zalecane może być wykorzystanie
komendy AIRDU.

1 AIRNG <numer wejścia (1-4)> MIN;
2 AIEN;
3 LOOP 600;
4 DELAY 100000;

57

Dawid Najda

5 AIRDM <numer wejścia (1-4)>;
6 END;

4.1.2 Kalibracja dzielników napięcia i wzmocnień

Teraz można ustawić dzielniki dla wejść napięciowych oraz wzmocnienie dla wejścia prą-
dowego. W przypadku wejść napięciowych zakres MIN nie jest regulowany, w przypadku
wejścia prądowego wszystkie trzy są. Na wejście podane jest jakieś znane napięcie, na
przykład z któregoś regulatora, odniesienia wewnątrz urządzenia lub zewnętrznej baterii.
Do porównania pomiarów został wykorzystany miernik uniwersalny UT58D. Potencjome-
try dzielników napięcia (lub regulujące wzmocnienie) są przestawiane, dopóki zwracane
wartości nie zgadzają się z rzeczywistością.

1 AIRNG <numer wejścia (1-4)> MIN;
2 AIEN;
3 LOOP 600;
4 DELAY 100000;
5 AIRDM <numer wejścia (1-4)>;
6 END;

4.1.3 Kalibracja wyjścia napięciowego

Wyjście napięciowe ma dwa potencjometry. Jeden, podobnie jak w wejściach, odpowiada
za ustawienie napięcia zera. Drugi odpowiada za dokładne ustawienie wzmocnienia.
Kalibracja pierwszego jest bardzo prosta: zadanie wpisuje do przetwornika kod odpo-
wiadający zeru, następnie należy ustawić potencjometr tak, żeby napięcie faktyczne na
wyjściu było równe zero.

1 AOVAL 1 0;
2 DELAY 100000000;

Drugi program posłużył do kalibracji wzmocnienia. Generuje on na zmianę napięcie bli-
skie granicznemu, tj. ±10 V. Należy przestawiać potencjometr w sprzężeniu tak długo aż
napięcie na wyjściu dla obu polaryzacji zgadza się z wartością żądaną. Może być konieczne
ponowne skorygowanie wcześniejszego potencjometru.

1 LOOP 100;
2 AOVAL 1 10;

58

Rozdział 4. Kalibracja i testy urządzenia

3 DELAY 3000000;
4 AOVAL 1 -10;
5 DELAY 3000000;
6 END;

4.1.4 Kalibracja wyjścia prądowego

Wyjście prądowe ma aż pięć potencjometrów. Procedura jego kalibracji jest najbardziej
skomplikowana. Jeden, podobnie jak w wyjściu napięciowym, odpowiada za ustawienie
prądu zera. Dwa kolejne (po jednym na tor) odpowiadają za precyzyjne ustawienie trans-
konduktancji – zależności prądu wyjściowego od napięcia z przetwornika. Ostatnie dwa
(po jednym na tor) odpowiadają za uniezależnienie prądu wyjściowego od podłączonego
obciążenia (oporu).
Z tego względu ustawianie trwa trochę od końca. Najpierw niezależność od obciążenia jest
osobno nastawiana dla obu kanałów. Polega na zadaniu jakiegoś niezbyt dużego prądu
(jego wartość i tak będzie niedokładna). Do wyjścia podpięte są szeregowo opornik (np.
10–20 Ω) oraz miernik ustawiony na pomiar prądu.
Należy cyklicznie zwierać opornik i przestawiać potencjometr tak długo, aż płynący prąd
przestanie się zmieniać przy zwieraniu lub rozwieraniu (a więc uniezależni się od obciąże-
nia). Można taki test przeprowadzić również z większym oporem (np. 500 Ω) jednak prąd
musi być odpowiednio niski, aby nie nastąpiła saturacja. Zadanie służące do tej kalibracji
widnieje poniżej.

1 AOVAL 2 0.1;
2 DELAY 100000000;

Drugim ustawieniem jest prąd zera. Oba tory są ustawiane wspólnie, więc można mierzyć
ten z mniejszym zakresem, gdyż to w nim błąd będzie lepiej widoczny. Należy przestawiać
potencjometr tak długo, aż przez miernik przestanie płynąć prąd. Zadanie służące do tej
kalibracji przedstawiono poniżej.

1 AOVAL 2 0;
2 DELAY 100000000;

Finalnie ustawiana jest transkonduktancja. Ponieważ boczniki nie mają idealnie dokładnej
wartości (tak samo sprzężenia i same wzmacniacze), taka korekta jest wymagana. Teraz
wartości mierzone muszą zgadzać się z zadanymi – należy tak ustawić potencjometr, aby
było to prawdą. Powinno się to stać jednocześnie dla prądów dodatnich i ujemnych, jednak

59

Dawid Najda

jeśli tak nie jest – może być wymagana ponowna korekta prądu zera – aż obie wartości
są symetryczne.

1 LOOP 100;
2 AOVAL 2 0.1;
3 DELAY 3000000;
4 AOVAL 2 -0.1;
5 DELAY 3000000;
6 END;

4.1.5 Test wejść cyfrowych

Wejścia cyfrowe nie są regulowane, więc zostało tylko przetestowane ich działanie. Ze
względu na rezystory pulldown, stan jest domyślnie niski. Do każdego z wejść zostało
podłączone napięcie (minimum 3.3 V) i sprawdzono, czy stan cyfrowy zmienia się po-
prawnie.
W programie odczytującym pomiary została wprowadzona minimalna zmiana, która po-
woduje wyświetlenie osobno bitów:

1 data = "{:08b}".format(tpl[0])

Zaś poniżej przedstawione jest zadanie odczytujące wejścia cyfrowe:

1 LOOP 10000;
2 DIRD;
3 DELAY 10000;
4 END;

4.1.6 Test wyjść cyfrowych

Wyjścia cyfrowe również nie są regulowane, więc zostało tylko przetestowane ich działa-
nie. Ze względu na wykorzystanie tranzystorów Darlington, stan logiczny wysoki oznacza
przyciągnięcie wyjścia do zera. Stan niski to wysoka impedancja.
Do wyjść zostały podłączone cztery diody o wspólnym zasilaniu. Program po kolei “odli-
cza” od 0 do 15, wyświetlając wynik w systemie dwójkowym.

1 LOOP 1000;
2 DOWR 0; DELAY 10000;

60

Rozdział 4. Kalibracja i testy urządzenia

3 DOWR 1; DELAY 10000;
4 DOWR 2; DELAY 10000;
5 DOWR 3; DELAY 10000;
6 DOWR 4; DELAY 10000;
7 DOWR 5; DELAY 10000;
8 DOWR 6; DELAY 10000;
9 DOWR 7; DELAY 10000;

10 DOWR 8; DELAY 10000;
11 DOWR 9; DELAY 10000;
12 DOWR A; DELAY 10000;
13 DOWR B; DELAY 10000;
14 DOWR C; DELAY 10000;
15 DOWR D; DELAY 10000;
16 DOWR E; DELAY 10000;
17 DOWR F; DELAY 10000;
18 ENDLOOP;

Wszystkie diody zaświecają się i gasną w poprawnej kolejności. Sprawdzona została rów-
nież maksymalna częstotliwość – zmniejszając opóźnienia między instrukcjami, a finalnie
całkiem je usuwając. Udało się uzyskać wydajność rzędu < 10 µs na przełączenie, a więc
częstotliwość 100 kHz.

4.2 Sprawdzenie charakterystyki częstotliwościowej
wyjścia

Aby określić rzeczywiste możliwości urządzenia, została zbadana charakterystyka często-
tliwościowa toru wyjściowego napięciowego. Wyjście napięciowe zostało podłączone do
oscyloskopu cyfrowego Rigol DS1052E. Za pomocą niżej przedstawionego programu zo-
stały po kolei generowane sinusoidy o amplitudzie 3 V i różnych częstotliwościach: 1 Hz,
10 Hz, 100 Hz, 1 kHz, 10 kHz.

1 LOOP 20000;
2 AOGEN 1 0;
3 DELAY 25;
4 END;

Listing 4.4: Zadanie służące do generowania sinusoid

61

Dawid Najda

Każdy przebieg został zmierzony przez oscyloskop, czego wyniki są przedstawione poniżej:

Rys. 4.1: Przebieg wygenerowanej sinusoidy o częstotliwości 1 Hz

Rys. 4.2: Przebieg wygenerowanej sinusoidy o częstotliwości 10 Hz

Rys. 4.3: Przebieg wygenerowanej sinusoidy o częstotliwości 100 Hz

62

Rozdział 4. Kalibracja i testy urządzenia

Rys. 4.4: Przebieg wygenerowanej sinusoidy o częstotliwości 1 kHz

Rys. 4.5: Przebieg wygenerowanej sinusoidy o częstotliwości 10 kHz

Tory wyjściowe nie posiadają filtrów dolnoprzepustowych, co widać na przedstawionych
powyżej przebiegach. Z zarejestrowanych odpowiedzi czasowych można wyciągnąć kilka
wniosków. Przy częstotliwości 10 kHz program pozwala na maksymalnie ok. 5-6 próbek na
okres, tak więc przebieg jest wyraźnie zniekształcony. Napięcie wyjściowe potrafi osiągnąć
zadaną wartość w czasie około 10 µs, nawet jeśli wymagana jest zmiana o kilka woltów.
Aby wygładzić przebieg napięcia wyjściowego, użytkownik może dołączyć własny filtr na
wyjściu napięciowym. Pomiędzy urządzeniem a oscyloskopem został na próbę wpięty filtr
aktywny model 3202R firmy Krohn-Hite, przedstawiony na rysunku 4.7. Pozwoliło to na
znaczną poprawę kształtu przebiegu, szczególnie przy najwyższej częstotliwości; zauwa-
żalny jest jednak niewielki spadek amplitudy. Filtr został ustawiony na dolnoprzepustowy
z częstotliwością graniczą równą 20 kHz.

63

Dawid Najda

Rys. 4.6: Przebieg wygenerowanej sinusoidy o częstotliwości 10 kHz po filtrowaniu

Rys. 4.7: Panel przedni filtra model 3202R firmy Krohn-Hite

4.3 Przykładowe generatory – podstawowe sygnały

Następnie zostały przetestowane generatory funkcyjne. Wyjście napięciowe zostało pod-
łączone do oscyloskopu, w celu wykonania pomiarów. Poniżej przedstawiony jest obiekt
ustawień zawierający kilka testowanych generatorów oraz zadanie, które było odpowie-
dzialne za obsługę. Wszystkie przebiegi mają okres 1 ms oraz amplitudę 3 V. Przebieg
prostokątny ma wypełnienie 50%. Przebieg trójkątny jest symetryczny, zaś piłokształtny
– przechylony, z pionowym zboczem opadającym.

1 "generators": [
2 [{"A": 3, "S": {"WF": "Sine", "T": 100000}}],
3 [{"A": 3, "S": {"WF": "Square", "T": 100000, "D": 50000}}],
4 [{"A": 3, "S": {"WF": "Triangle", "T": 100000, "P": 25000}}],
5 [{"A": 3, "S": {"WF": "Triangle", "T": 100000, "P": 50000}}],
6]

Listing 4.5: Przetestowane generatory

64

Rozdział 4. Kalibracja i testy urządzenia

1 LOOP 20000;
2 AOGEN 1 0;
3 DELAY 25;
4 END;

Listing 4.6: Zadanie służące do generowania sinusoid

Wszystkie podstawowe przebiegi są generowane zgodnie z założeniami.

Rys. 4.8: Przebieg sygnału sinusoidalnego

Rys. 4.9: Przebieg sygnału prostokątnego

65

Dawid Najda

Rys. 4.10: Przebieg sygnału trójkątnego

Rys. 4.11: Przebieg sygnału piłokształtnego

Następnie sprawdzony został przykładowy przebieg, będący sumą dwóch przebiegów pro-
stokątnych, przedstawiony w punkcie 3.7.3. Na drugim rysunku występuje w wersji prze-
filtrowanej wspomnianym wcześniej filtrem 2302R ustawionym na dolnoprzepustowy z
częstotliwością graniczną 100 Hz.

66

Rozdział 4. Kalibracja i testy urządzenia

Rys. 4.12: Przebieg funkcji symulującej prosty inwerter

Rys. 4.13: Przebieg funkcji symulującej prosty inwerter po przefiltrowaniu

Finalnie, przetestowany został generator szumu – Random. Dodatkowo, na drugim kanale
został przedstawiony ten sam sygnał, lecz po przefiltrowaniu z dwoma różnymi częstotli-
wościami granicznymi.

Rys. 4.14: Przebieg sygnału losowego i po lekkim przefiltrowaniu

67

Dawid Najda

Rys. 4.15: Przebieg sygnału losowego i po mocniejszym przefiltrowaniu

Przebieg świergotowy trwa pełną sekundę i zmienia się od 1 Hz do 100 Hz. Został on zmie-
rzony poprzez wpięcie wyjścia do wejścia urządzenia, żeby w prosty sposób przechwycić
całość sygnału.

1 "generators": [
2 [{ "A": 3, "S": {"WF": "Chirp", "T": 1000000, "FS": 1 * 1e-6, "FD":

99 * 1e-6} }],↪→

3 [{ "A": 3, "S": {"WF": "ChirpLog", "T": 1000000, "FS": 1 * 1e-6,
"FR": 100}, }],↪→

4]

Listing 4.7: Przetestowane generatory sygnału świergotowego

1 AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
2 LOOP 10000;
3 AOGEN 1 0;
4 AIRDF 1 1;
5 DELAY 100;
6 END;

Listing 4.8: Zadanie generujące i mierzące sygnały

68

Rozdział 4. Kalibracja i testy urządzenia

Rys. 4.16: Przebieg sygnału świergotowego

Rys. 4.17: Przebieg sygnału świergotowego logarytmicznego

69

Dawid Najda

4.4 Odpowiedź częstotliwościowa wejścia napięcio-
wego

4.4.1 Badanie sygnałem sinusoidalnym

Aby określić rzeczywiste możliwości urządzenia, został przeprowadzony test odpowiedzi
częstotliwościowej wejść. Wyjście napięciowe zostało podłączone do jednego z wejść na-
pięciowych. Pełny kod programu odbierajacego i przetwarzającego pomiary dostępny jest
w dodatku A.4.1.
Na wyjście został zadany sygnał sinusoidalny, gdzie częstotliwość była zwiększana dwu-
krotnie za każdym powtórzeniem programu. Jego napięcie szczytowe to ok. 3 V, zaś war-
tość RMS została zmierzona miernikiem UT58D jako minimalnie większa niż teoretyczna,
tj. 2.22 V. Poniżej jest przedstawione zadanie odpowiedzialne za generację i pomiary:

1 AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
2 LOOP 20000;
3 AOGEN 1 0;
4 AIRDF 1 1;
5 DELAY 50;
6 END;

Listing 4.9: Zadanie służące do badania odpowiedzi częstotliwościowej

Każdy przebieg został zmierzony przez urządzenie i wyliczona została jego wartość sku-
teczna napięcia. Następnie przeliczono ją na decybele względem sygnału wejściowego. Są
one przedstawione na rysunkach niżej.
Do wzoru na odpowiedź amplitudową prostego filtru dolnoprzepustowego pierwszego stop-
nia wstawiono zmierzone częstotliwości i wzmocnienia i za pomocą biblioteki SciPy algo-
rytmem minimalizacji została wyznaczona częstotliwość graniczna fc.

G = 20 lg

 1√
1 +

(
f
fc

)2

 = −10 lg
1 +

(
f

fc

)2


70

Rozdział 4. Kalibracja i testy urządzenia

Rys. 4.18: Punkty pomiarowe wraz z dopasowaną funkcją

Częstotliwość graniczna została wyznaczona na około 5765 Hz. Tak niska częstotliwość
graniczna wynika z kilku kwestii: ręcznej budowy na płytce uniwersalnej (a więc nie-
zoptymalizowanych ścieżek), dużego rozmiaru dzielników i przekaźników oraz wysokiej
rezystancji wejściowej (przez co nawet minimalna pojemność parazytowa mocno ograni-
cza częstotliwość).

4.4.2 Badanie sygnałem świergotowym

W celu weryfikacji, eksperyment został powtórzony używając sygnału Chirp. W ciągu 10
sekund przechodzi on od zera do 10 kHz, tak więc w tym przypadku czas i częstotliwość
są równe (pomijając rzędy wielkości). Wizualnie z wykresu została odnaleziona amplituda
mniejsza

√
2-krotnie od maksymalnej i zaznaczona jej częstotliwość. Wynik jest zbliżony

do poprzedniej metody.

Rys. 4.19: Amplituda pomiarów sygnału świergotowego w funkcji czasu/częstotliwości

71

Dawid Najda

4.5 Eksperyment 1 – wyznaczenie charakterystyk
tranzystora BJT

Zostały przetestowane trzy charakterystyki statyczne tranzystora bipolarnego. Są to: wej-
ściowa, przejściowa i wyjściowa. Badania te zostały powtórzone dla dwóch tranzystorów:
2N3904 oraz 2N3055.
Emiter tranzystora jest połączony z masą. Do bazy zostało podłączone wyjście prądowe
oraz wejście napięciowe. Kolektor został zasilony z wyjścia napięciowego poprzez wej-
ście prądowe. W ten sposób znamy (poprzez zadawanie lub mierzenie) wszystkie cztery
potrzebne wielkości – prąd bazy, napięcie baza-emiter, prąd kolektora, napięcie kolektor-
emiter. Schemat połączeń wykorzystany w celu przeprowadzenia doświadczenia jest przed-
stawiony poniżej.

Rys. 4.20: Schemat układu użytego do przeprowadzenia doświadczeń

4.5.1 Badanie charakterystyki wejściowej tranzystora

Do wyznaczenia tej charakterystyki należy dla kilku wartości UCE przedstawić przebieg
zależności UBE od IB. W tym celu został stworzony program w języku Python, który
wgrywa ustawienia, zapisuje pomiary i przetwarza je. Zawiera on też zadanie i obiekt ge-
neratora. Wpisując wartość zmiennej Uce możemy w prosty sposób ustawiać generowane
przez zadanie napięcie kolektor-emiter. Urządzenie wymusza przez bazę liniowo narasta-
jący prąd w przedziale 0–1 mA i mierzy napięcie baza-emiter. Pomiary te zostają następnie
zapisane do pliku. Poniżej przedstawione jest zadanie, zaś pełny kod zarządzający odbio-

72

Rozdział 4. Kalibracja i testy urządzenia

rem i analizą pomiarów dostępny jest w dodatku A.4.2.

1 AOVAL 1 {Uce};
2 AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
3 LOOP 1000;
4 AOGEN 2 0;
5 AIRDF 1 50;
6 DELAY 1000;
7 END;

4.5.2 Badanie charakterystyki przejściowej tranzystora

Do wyznaczenia tej charakterystyki należy dla kilku wartości UCE przedstawić przebieg
zależności IC od IB. W tym celu został lekko zmodyfikowany program oraz zadanie. Wpi-
sując wartość zmiennej Uce możemy w prosty sposób ustawiać napięcie kolektor-emiter.
Urządzenie wymusza przez bazę liniowo narastający prąd w przedziale 0–1 mA i mierzy
prąd kolektora. Pomiary te zostają następnie zapisane do pliku. Poniżej przedstawione
jest zadanie, zaś kod zarządzający odbiorem i analizą pomiarów dostępny jest w dodatku
A.4.3.

1 AOVAL 1 {Uce};
2 AIRNG 4 MAX; AIEN; DELAY 100000; RSTTM;
3 LOOP 1000;
4 AOGEN 2 0;
5 AIRDF 4 50;
6 DELAY 1000;
7 END;

4.5.3 Badanie charakterystyki wyjściowej tranzystora

Do wyznaczenia tej charakterystyki należy dla kilku wartości IB przedstawić przebieg
zależności IC od UCE. W tym celu został lekko zmodyfikowany program oraz zadanie.
Wpisując wartość zmiennej Ib możemy w prosty sposób ustawiać prąd bazy. Urządzenie
zasila kolektor liniowo narastającym napięciem w przedziale 0–10 V i mierzy prąd kolek-
tora. Pomiary te zostają następnie zapisane do pliku. Poniżej przedstawione jest zadanie,
zaś kod zarządzający odbiorem i analizą pomiarów dostępny jest w dodatku A.4.4.

1 AOVAL 2 {Ib};
2 AIRNG 4 MAX; AIEN; DELAY 100000; RSTTM;

73

Dawid Najda

3 LOOP 1000;
4 AOGEN 1 0;
5 AIRDF 4 50;
6 DELAY 1000;
7 END;

4.5.4 Wykresy charakterystyk tranzystorów 2N3904 i 2N3055 wy-
znaczone za pomocą prototypu bloku wejść-wyjść

Zbadane zostały dwa tranzystory: 2N3904 [8] oraz 2N3055 [1]. Różnią się one parametrami,
co widać też na charakterystykach. Rezultaty wszystkich pomiarów znajdują się poniżej,
sześć rysunków przedstawiających trzy charakterystyki obu tranzystorów.
Jedyna nietypowość dostrzeżona w zmierzonych charakterystykach to kształt charaktery-
styk przejściowych. W tranzystorze 2N3904 występuje wyraźne zgięcie, co oznacza zmniej-
szenie wzmocnienia prądowego. Jest to jednak możliwe do wytłumaczenia na podstawie
danych producenta [8] – na rysunku 4.21 (Fig. 15 w oryginalnym dokumencie) można
zauważyć spadek wzmocnienia prądowego, występujący powyżej prądu kolektora 20 mA,
nawet dwu- czy trzykrotny. Zakładając typowe wzmocnienie dla tego zakresu prądu około
100, spadek występuje przy prądzie bazy 0.2 mA, czyli tak jak na wykresach przedstawia-
jących przeprowadzone pomiary.

Rys. 4.21: Zależność wzmocnienia od prądu kolektora tranzystora 2N3904 [8]

74

Rozdział 4. Kalibracja i testy urządzenia

Rys. 4.22: Charakterystyka wejściowa tranzystora 2N3904

Rys. 4.23: Charakterystyka wejściowa tranzystora 2N3055

75

Dawid Najda

Rys. 4.24: Charakterystyka przejściowa tranzystora 2N3904

Rys. 4.25: Charakterystyka przejściowa tranzystora 2N3055

76

Rozdział 4. Kalibracja i testy urządzenia

Rys. 4.26: Charakterystyka wyjściowa tranzystora 2N3904

Rys. 4.27: Charakterystyka wyjściowa tranzystora 2N3055

77

Dawid Najda

4.6 Eksperyment 2 – wyznaczenie charakterystyk
diod półprzewodnikowych

Do wyznaczenia tej charakterystyki zostały użyte program oraz zadanie bardzo podobne
do tych użytych do wyznaczenia charakterystyki wejściowej tranzystora. Urządzenie wy-
musza przez diodę liniowo narastający prąd w przedziale 0–1 mA i mierzy napięcie anoda-
katoda. Pomiary te zostają następnie zapisane do pliku. Poniżej przedstawione jest zada-
nie:

1 AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
2 LOOP 1000;
3 AOGEN 2 0;
4 AIRDF 1 50;
5 DELAY 1000;
6 END;

Rys. 4.28: Charakterystyki różnych diod

Można zauważyć, że największy spadek mają diody LED, tym większy im wyższa często-
tliwość wytwarzanej fali światła. Pod nimi jest mostek prostowniczy T6KB (ze względu na
podwójną diodę między - i +), później niewielka dioda krzemowa z popularnej rodziny

78

Rozdział 4. Kalibracja i testy urządzenia

1N400X, po niej dioda prostownicza trochę wyższego prądu rodziny UF540X, za nią dioda
RHRP1560 w formie TO-220, zaś na samym końcu wyspecjalizowana dioda prostownicza
STPS3045C w formie TO-245 używana np. w zasilaczach komputerowych, z bardzo niskim
spadkiem oraz wysokim maksymalnym prądem.

4.7 Eksperyment 3 – wyznaczenie odpowiedzi często-
tliwościowej filtra

Została przetestowana odpowiedź częstotliwościowa prostego filtra RC typu pasmowoprze-
pustowego. Do pomiarów została dopasowana funkcja odpowiedzi – wyznaczona w ten
sposób została częstotliwość graniczna. Dla porównania, filtr został również zasymulo-
wany programem LTSpice.

Rys. 4.29: Schemat filtra oraz wartości komponentów

Na podstawie wartości komponentów wyznaczono: częstotliwość graniczna części gór-
noprzepustowej fH = 93.1 Hz, częstotliwość graniczna części dolnoprzepustowej fL =
40.7 Hz. Oczywiście to zakłada brak wzajemnego obciążania obu części, co nie jest prawdą,
jednak obliczone częstotliwości służą jako punkt odniesienia.

Badanie sygnałem świergotowym

Pomiary zostały dokonane w następujący sposób: na wejście podany został sygnał świergo-
towy o częstotliwości zmieniającej się 1–10000 Hz. Został on dokładnie zmierzony. Następ-
nie zadanie zostało wykonane ponownie, jednak tym razem mierząc wyjście. Oba sygnały
zostały przetworzone transformatą Fouriera w celu otrzymania spektrum, zaś następnie

79

Dawid Najda

spektrum wyjścia zostało znormalizowane, dzieląc je przez spektrum wejścia. Na podsta-
wie tego ilorazu można wyznaczyć charakterystykę częstotliwościową zarówno amplitudy
jak i fazy.
Poniżej przedstawione jest zadanie dla urządzenia, zaś cały kod w języku Python odpo-
wiedzialny za transmisję ustawień i pomiarów oraz obliczenia dostępny jest w dodatku
A.4.5.

1 AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
2 LOOP 2000000;
3 AOGEN 1 0;
4 AIRDF 1 1;
5 DELAY 50;
6 END;

Rys. 4.30: Przebieg sygnałów wejściowego i wejściowego

80

Rozdział 4. Kalibracja i testy urządzenia

Rys. 4.31: Odpowiedź częstotliwościowa amplitudy i fazy

Parametry oszacowane za pomocą dopasowania mają następujące wartości: częstotliwość
graniczna części górnoprzepustowej fH = 85.7 Hz, częstotliwość graniczna części dolno-
przepustowej fL = 30.2 Hz.

Badanie sygnałem sinusoidalnym

W celu weryfikacji, eksperyment został też przeprowadzony w inny sposób. Dla pewnego
zbioru częstotliwości zostały wygenerowane fale sinusoidalne oraz wykonane pomiary wej-
ścia i wyjścia. Dla każdej z częstotliwości zostały policzone wartości napięcia RMS wejścia
i wyjścia w celu wyznaczenia tłumienia, zaś używając korelacji tych sygnałów zostało wy-
znaczone przesunięcie w fazie. W każdym przypadku została użyta tylko druga połowa
pomiarów, w celu ustabilizowania działania filtra.
Zadanie jest takie samo, jedynie zmienił się generator; cały kod w języku Python odpo-
wiedzialny za pomiary i obliczenia dostępny jest w dodatku A.4.6.

81

Dawid Najda

Rys. 4.32: Odpowiedź częstotliwościowa amplitudy i fazy

Łatwo zauważyć, że wyznaczona charakterystyka jest bardzo podobna do tej z poprzed-
niego punktu. pomijając zakłócenia w wyznaczonej fazie przy wyższych częstotliwościach.

Porównanie z symulacją

Filtr został też przetestowany za pomocą programu LTSpice. Wyniki są bardzo zbliżone,
chociaż oczywiście program nie zawiera zakłóceń i innych błędów pomiaru, przez co jego
wykres jest gładszy.

82

Rozdział 4. Kalibracja i testy urządzenia

Rys. 4.33: Odpowiedź częstotliwościowa amplitudy i fazy

83

Dawid Najda

84

Rozdział 5

Podsumowanie

W ramach niniejszej pracy magisterskiej stworzono uniwersalny blok wejść-wyjść analo-
gowych i cyfrowych, sterowany za pomocą komputera PC. Przeanalizowano rodzaje prze-
tworników i wybrano najbardziej odpowiednie do tego typu zastosowania. Zaprojektowano
tory wejść i wyjść oraz dobrano odpowiednie wzmacniacze i inne komponenty wspoma-
gające. Sprawdzono różne sposoby komunikacji z urządzeniem, po czym wybrano taki,
który spełniał wszystkie założenia projektu i oferował najlepszą wydajność. Stworzono
prosty język, pozwalający na sterowanie pracą urządzenia przez użytkownika. Zbudo-
wano prototyp bloku wejść-wyjść z wykorzystaniem płytki uniwersalnej. Mikrokontroler
oprogramowano tak, żeby zarządzał układami znajdującymi się na płytce oraz prowadził
dwukierunkową komunikację z użytkownikiem, w postaci przyjmowania ustawień oraz od-
syłania dokonanych pomiarów. Przeprowadzono kalibrację działania torów wejść i wyjść.
Przetestowano właściwości urządzenia pod względem charakterystyk częstotliwościowych
oraz dokładności generowanych sygnałów. Przeprowadzono przykładowe eksperymenty
demonstrujące możliwości zbudowanego układu oraz, w celu weryfikacji ich poprawności,
porównano wyniki do obliczeń teoretycznych, symulacji lub danych z kart katalogowych.
Uzyskane wyniki testów i eksperymentów pozwalają wnioskować, że cel pracy został zre-
alizowany. Urządzenie spełnia założenia projektowe, a wykonane eksperymenty wykazały
jego funkcjonalność i precyzję. Sposób montażu urządzenia (płytka uniwersalna) spowo-
dował niestety, że niektóre komponenty nie osiągają wydajności deklarowanej przez pro-
ducenta. Jest to ograniczona częstotliwość zegara sterująca komunikacją mikrokontrolera
z przetwornikami.
Możliwy jest dalszy rozwój pracy. Obejmuje on między innymi zbudowanie urządzenia na
dedykowanej płytce drukowanej, z wykorzystaniem elementów o szerszym paśmie. Moż-
liwa jest również optymalizacja oprogramowania, np. przez przetestowanie działania in-
nych metod synchronizacji niż powiadamianie z przerwań, rozszerzenie funkcjonalności,
jak implementację generatorów DDS oprócz funkcyjnych, czy klas pozwalających na stwo-
rzenie jakiegoś rodzaju wewnętrznego sprzężenia, jak kontrolery PID mierzące napięcie
wejściowe i generujące napięcie wyjściowe. Kolejną opcją rozwoju oprogramowania jest

85

Dawid Najda

rozszerzenie stworzonego języka o instrukcje i pętle warunkowe, co pozwoliłoby między
innymi na implementację funkcjonalności wyzwalania znanej z oscyloskopów. Mogłoby
to wymagać nowych instrukcji, np. do obsługi pewnego rodzaju jednostki arytmetyczno-
logicznej.

86

Bibliografia

[1] 2N3055(NPN), MJ2955(PNP) / Complementary Silicon Power Transistors. ON
Semiconductor Corp. 2005. url: https://www.onsemi.com/pdf/datasheet/
2n3055-d.pdf.

[2] ADC DC Specifications. Microchip Technology, Inc. 14 list. 2023. url: https://
microchipdeveloper.com/xwiki/bin/view/products/data-converters/adc-
specs/adc-dc/.

[3] An overview of HTTP. MDN Web Docs. 3 mar. 2024. url: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Overview.

[4] James Bryant i Walt Kester. Data Converter Architectures. Analog Devices, Inc.
30 sierp. 2017. url: http://www.analog.com/media/en/training-seminars/
design-handbooks/Data-Conversion-Handbook/Chapter3.pdf.

[5] Compilers vs. Interpreters. Ionos SE. 7 list. 2023. url: https://www.ionos.com/
digitalguide/websites/web-development/compilers-vs-interpreters/.

[6] Piyu Dhaker. Introduction to SPI Interface. Analog Devices, Inc. 2018. url: https:
/ / www . analog . com / media / en / analog - dialogue / volume - 52 / number - 3 /
introduction-to-spi-interface.pdf.

[7] Digital Multimeter Measurement Fundamentals. NATIONAL INSTRUMENTS
CORP. url: https : / / www . ni . com / en / shop / electronic - test -
instrumentation / digital - multimeters / dmm - measurement - fundamentals .
html.

[8] General Purpose Transistors / NPN Silicon / 2N3903, 2N3904. ON Semiconductor
Corp. 2021. url: https://www.onsemi.com/pdf/datasheet/2n3903-d.pdf.

[9] Rop Gonggrijp. I2C Manager for ESP32. 2022. url: https://github.com/ropg/
i2c_manager.

[10] How delta-sigma ADCs work. Texas Instruments Inc. Lip.–wrz. 2011. url: https:
//www.ti.com/lit/an/slyt423a/slyt423a.pdf.

[11] HTTP Server - ESP32. Espressif Systems Inc. 10 sierp. 2023. url: https : / /
docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/
protocols/esp_http_server.html.

87

https://www.onsemi.com/pdf/datasheet/2n3055-d.pdf
https://www.onsemi.com/pdf/datasheet/2n3055-d.pdf
https://microchipdeveloper.com/xwiki/bin/view/products/data-converters/adc-specs/adc-dc/
https://microchipdeveloper.com/xwiki/bin/view/products/data-converters/adc-specs/adc-dc/
https://microchipdeveloper.com/xwiki/bin/view/products/data-converters/adc-specs/adc-dc/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
http://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter3.pdf
http://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter3.pdf
https://www.ionos.com/digitalguide/websites/web-development/compilers-vs-interpreters/
https://www.ionos.com/digitalguide/websites/web-development/compilers-vs-interpreters/
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.ni.com/en/shop/electronic-test-instrumentation/digital-multimeters/dmm-measurement-fundamentals.html
https://www.ni.com/en/shop/electronic-test-instrumentation/digital-multimeters/dmm-measurement-fundamentals.html
https://www.ni.com/en/shop/electronic-test-instrumentation/digital-multimeters/dmm-measurement-fundamentals.html
https://www.onsemi.com/pdf/datasheet/2n3903-d.pdf
https://github.com/ropg/i2c_manager
https://github.com/ropg/i2c_manager
https://www.ti.com/lit/an/slyt423a/slyt423a.pdf
https://www.ti.com/lit/an/slyt423a/slyt423a.pdf
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/protocols/esp_http_server.html

Dawid Najda

[12] INA122 Single Supply, MicroPower INSTRUMENTATION AMPLIFIER. Texas In-
struments Inc. 2024. url: https://www.ti.com/lit/ds/symlink/ina122.pdf.

[13] Walt Jung, Walt Kester i James Bryant. Data Converter Support Circuits. Analog
Devices, Inc. 30 sierp. 2017. url: https://www.analog.com/media/en/training-
seminars/design-handbooks/Data-conversion-handbook/Chapter7.pdf.

[14] Walt Jung, Walt Kester, James Bryant, Joe Buxton, Wes Freeman, Ethan Bor-
deax, Johannes Horvath, Catherine Redmond i Eva Murphy. Hardware Design
Techniques. Analog Devices, Inc. 30 sierp. 2017. url: https : / / www . analog .
com/media/en/training- seminars/design- handbooks/Data- conversion-
handbook/Chapter9.pdf.

[15] Walt Kester, Dan Sheingold i James Bryant. Fundamentals of Sampled Data Sys-
tems. Analog Devices, Inc. 30 sierp. 2017. url: https://www.analog.com/media/
en / training - seminars / design - handbooks / Data - conversion - handbook /
Chapter2.pdf.

[16] Key Parameters Of ADCs. Monolithic Power Systems, Inc. 14 list. 2023. url:
https://www.monolithicpower.com/en/analog- to- digital- converters/
introduction-to-adcs/key-parameters-of-adcs.

[17] LM4040 Precision Micropower Shunt Voltage Reference. Texas Instruments Inc.
2017. url: https://www.ti.com/lit/ds/symlink/lm4040.pdf.

[18] LMx24-N, LM2902-N Low-Power, Quad-Operational Amplifiers. Texas Instruments
Inc. 2015. url: https://www.ti.com/lit/ds/symlink/lm2902-n.pdf.

[19] LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLI-
FIERS. Texas Instruments Inc. 2009. url: https://www.ti.com/lit/ds/symlink/
lt1014.pdf.

[20] MCP23008/MCP23S08 8-Bit I/O Expander with Serial Interface. Microchip Tech-
nology Inc. 2019. url: https://ww1.microchip.com/downloads/en/DeviceDoc/
MCP23008-MCP23S08-Data-Sheet-20001919F.pdf.

[21] MCP3204/3208 2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial
Interface. Microchip Technology Inc. 2008. url: https://ww1.microchip.com/
downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/
21298e.pdf.

[22] MCP4902/4912/4922 8/10/12-Bit Dual Voltage Output Digital-to-Analog Conver-
ter with SPI Interface. Microchip Technology Inc. 2010. url: https : / / ww1 .
microchip.com/downloads/en/devicedoc/22250a.pdf.

88

https://www.ti.com/lit/ds/symlink/ina122.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter7.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter7.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter9.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter9.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter9.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter2.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter2.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter2.pdf
https://www.monolithicpower.com/en/analog-to-digital-converters/introduction-to-adcs/key-parameters-of-adcs
https://www.monolithicpower.com/en/analog-to-digital-converters/introduction-to-adcs/key-parameters-of-adcs
https://www.ti.com/lit/ds/symlink/lm4040.pdf
https://www.ti.com/lit/ds/symlink/lm2902-n.pdf
https://www.ti.com/lit/ds/symlink/lt1014.pdf
https://www.ti.com/lit/ds/symlink/lt1014.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP23008-MCP23S08-Data-Sheet-20001919F.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP23008-MCP23S08-Data-Sheet-20001919F.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21298e.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21298e.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21298e.pdf
https://ww1.microchip.com/downloads/en/devicedoc/22250a.pdf
https://ww1.microchip.com/downloads/en/devicedoc/22250a.pdf

Bibliografia

[23] MCP6021/1R/2/3/4 Rail-to-Rail Input/Output, 10 MHz Op Amps. Microchip Tech-
nology Inc. 2023. url: https://ww1.microchip.com/downloads/aemDocuments/
documents / MSLD / ProductDocuments / DataSheets / MCP6021 - Data - Sheet -
DS20001685.pdf.

[24] MCP606/7/8/9 2.5V to 6.0V Micropower CMOS Op Amp. Microchip Techno-
logy Inc. 2009. url: https://ww1.microchip.com/downloads/aemDocuments/
documents/APID/ProductDocuments/DataSheets/11177f.pdf.

[25] Dawid Najda. ESP32 MCP23008 expander driver/library. 2024. url: https://
github.com/herhor67/MCP23008.

[26] Dawid Najda. ESP32 MCP3x0x ADC driver/library. 2024. url: https://github.
com/herhor67/MCP3X0X.

[27] Dawid Najda. ESP32 MCP4xxx DAC driver/library. 2024. url: https://github.
com/herhor67/MCP4XXX.

[28] Robert Nystrom. Crafting Interpreters. 2021. url: https : / /
craftinginterpreters.com/a-map-of-the-territory.html.

[29] Don Peterson i B&K Precision. B&K Precision Function Generator Guide. B&K
Precision. url: https://bkpmedia.s3.amazonaws.com/downloads/guides/en-
us/function-generator-awg-guide.pdf.

[30] Eric Peňa i Mary Grace Legaspi. UART: A Hardware Communication Protocol.
Analog Devices, Inc. 2020. url: https://www.analog.com/media/en/analog-
dialogue/volume-54/number-4/uart-a-hardware-communication-protocol.
pdf.

[31] SNx4HC125 Quadruple Buffers with 3-State Outputs. Texas Instruments Inc. 2021.
url: https://www.ti.com/lit/ds/symlink/sn74hc125.pdf.

[32] Socket programming. IBM. 7 maj. 2024. url: https://www.ibm.com/docs/en/i/
7.5?topic=communications-socket-programming.

[33] Chris Stephens. Embedded USB - a brief tutorial. Computer Solutions Ltd. url:
https://www.computer-solutions.co.uk/info/Embedded_tutorials/usb_
tutorial.htm.

[34] ULN2801A, ULN2802A, ULN2803A, ULN2804A Eight Darlington arrays. STMi-
croelectronics N.V. 2018. url: https://www.st.com/resource/en/datasheet/
uln2801a.pdf.

[35] Jonathan Valdez i Jared Becker. Understanding the I2C Bus. Texas Instruments
Inc. 2015. url: https://www.ti.com/lit/an/slva704/slva704.pdf.

[36] WebSocket. Wikipedia. 16 maj. 2023. url: https://pl.wikipedia.org/wiki/
WebSocket.

89

https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/11177f.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/11177f.pdf
https://github.com/herhor67/MCP23008
https://github.com/herhor67/MCP23008
https://github.com/herhor67/MCP3X0X
https://github.com/herhor67/MCP3X0X
https://github.com/herhor67/MCP4XXX
https://github.com/herhor67/MCP4XXX
https://craftinginterpreters.com/a-map-of-the-territory.html
https://craftinginterpreters.com/a-map-of-the-territory.html
https://bkpmedia.s3.amazonaws.com/downloads/guides/en-us/function-generator-awg-guide.pdf
https://bkpmedia.s3.amazonaws.com/downloads/guides/en-us/function-generator-awg-guide.pdf
https://www.analog.com/media/en/analog-dialogue/volume-54/number-4/uart-a-hardware-communication-protocol.pdf
https://www.analog.com/media/en/analog-dialogue/volume-54/number-4/uart-a-hardware-communication-protocol.pdf
https://www.analog.com/media/en/analog-dialogue/volume-54/number-4/uart-a-hardware-communication-protocol.pdf
https://www.ti.com/lit/ds/symlink/sn74hc125.pdf
https://www.ibm.com/docs/en/i/7.5?topic=communications-socket-programming
https://www.ibm.com/docs/en/i/7.5?topic=communications-socket-programming
https://www.computer-solutions.co.uk/info/Embedded_tutorials/usb_tutorial.htm
https://www.computer-solutions.co.uk/info/Embedded_tutorials/usb_tutorial.htm
https://www.st.com/resource/en/datasheet/uln2801a.pdf
https://www.st.com/resource/en/datasheet/uln2801a.pdf
https://www.ti.com/lit/an/slva704/slva704.pdf
https://pl.wikipedia.org/wiki/WebSocket
https://pl.wikipedia.org/wiki/WebSocket

Dawid Najda

[37] What is HTTP? Cloudflare, Inc. url: https://www.cloudflare.com/en-gb/
learning/ddos/glossary/hypertext-transfer-protocol-http/.

90

https://www.cloudflare.com/en-gb/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://www.cloudflare.com/en-gb/learning/ddos/glossary/hypertext-transfer-protocol-http/

Dodatki

91

Dodatek A

Dokumentacja techniczna

A.1 Oprogramowanie

Program korzysta z biblioteki ropg\i2c_manager[9], która zastępuje domyślny interfejs
I2C, daje bezpieczeństwo dla używania wielowątkowego i inne korzyści.
Konfiguracja SPI wymaga tylko podania numerów GPIO linii MOSI, MISO i CLK oraz flagi
odpowiedzialnej za oznaczenie mastera. Konfiguracja I2C również wymaga podania nume-
rów GPIO, ale dla linii SDA i SCL; poza tym częstotliwości zegara oraz włączenia rezystorów
pull-up.

A.2 Klasy

W przypadku obsługi elementów które mogą się powtarzać, zostały stworzone odpowied-
nie klasy. Są to np. przetworniki lub ekspandery. Oczywiście nie jest to jedyne zastosowanie
klas w projekcie.

A.2.1 Obsługa przetwornika A/C

Do obsługi przetwornika analogowo-cyfrowego została stworzona biblioteka (z połączenia
i modyfikacji kilku istniejących otwarto-źródłowych bibliotek) [26]. Klasa odpowiedzialna
za to jest szablonem – w celu możliwości obsługi różnych przetworników tej rodziny.
Najpierw zdefiniowano enumeracje, określające jego parametry: liczbę kanałów wejścio-
wych mcp_adc_channels_t, liczbę bitów mcp_adc_bits_t, oraz typ wyjścia (ze znakiem
lub bez) mcp_adc_signed_t. Te enumeracje są używane przy tworzeniu szablonów.

1 template <mcp_adc_channels_t C, mcp_adc_bits_t B, mcp_adc_signed_t S =
MCP_ADC_DATA_UNSIGNED>↪→

2 class MCP3xxx
3 {

93

Dawid Najda

4 private:
5 spi_host_device_t spi_host;
6 gpio_num_t cs_gpio;
7 int clk_hz;
8 spi_device_handle_t spi_hdl;
9

10 public:
11 MCP3xxx(spi_host_device_t, gpio_num_t, int);
12 ~MCP3xxx();
13

14 esp_err_t init();
15 esp_err_t deinit();
16

17 esp_err_t acquire_spi(TickType_t) const;
18 esp_err_t release_spi() const;
19

20 inline esp_err_t send_trx(spi_transaction_t &trx) const;
21 inline esp_err_t recv_trx(TickType_t timeout = portMAX_DELAY) const;
22 inline out_t parse_trx(const spi_transaction_t &trx) const;
23

24 static spi_transaction_t make_trx(uint8_t, mcp_adc_read_mode_t);
25 };

Listing A.1: Szablon definicji klasy zarządzającej ADC

Klasa zawiera następujące zmienne, podawane w konstruktorze: użyty host SPI (ESP32
posiada dwa), pin GPIO odpowiadający za chip select – włączenie komunikacji z ukła-
dem, oraz częstotliwość zegara podczas komunikacji. Funkcja init() wykorzystuje po-
dane parametry, tworzy ‘urządzenie’, zapisuje je do zmiennej spi_hdl oraz podłącza do
wybranego hosta.
W celu komunikacji z przetwornikiem, została stworzona statyczna metoda make_trx.
Zwraca ona odpowiednio przygotowany obiekt reprezentujący transakcję SPI – jest to
specjalna struktura, zawierająca wysyłane polecenie i dane oraz miejsce na odbierane
dane. Może ona być użyta wiele razy, bez ponownego tworzenia, co poprawia wydajność.
W przypadku użytego przetwornika A/C podaje się 5 bitów: 1 bit startowy, 1 bit odpo-
wiedzialny za wybór trybu pomiaru oraz 3 bity wyboru wejścia. Komenda ta zostaje na
żądanie programu wysłana do chipa. Następnie, przez 2 cykle zegara odpowiednie wejście
jest próbkowane. Finalnie, uruchamia się sekwencyjna praca przetwornika, produkując po
kolei 12 bitów przez 12 cykli zegara.
Tak reprezentowaną transakcję należy następnie wykonać za pomocą metody send_trx.

94

Dodatek A. Dokumentacja techniczna

Przekazuje ona dane do sterownika SPI, który obsługuje warstwę fizyczną. Aby poczekać
i odebrać dane, należy użyć metody recv_trx. Zostały one rozdzielone, ponieważ w ten
sposób w międzyczasie można wykonywać inny kod, zamiast spinowania bez celu. Jeśli obie
zostaną wykonane bez zwrócenia błędu, można następnie odczytać zmierzoną wartość,
zapisaną w obiekcie transakcji, za pomocą metody parse_trx. Zwraca ona odczytany
pomiar jako liczbę całkowitą, ze znakiem lub bez (zależnie od typu przetwornika).
Metody acquire_spi oraz release_spi służą do zajęcia całego hosta SPI przez jedno
urządzenie – poprawia to wydajność, gdyż sterownik nie musi sprawdzać czy inne urzą-
dzenia nie próbują się komunikować na tych samych liniach oraz nie musi przełączać
kontekstu.

1 using MCP3002 = MCP3xxx<MCP_ADC_CHANNELS_2, MCP_ADC_BITS_10>;
2

3 using MCP3004 = MCP3xxx<MCP_ADC_CHANNELS_4, MCP_ADC_BITS_10>;
4 using MCP3008 = MCP3xxx<MCP_ADC_CHANNELS_8, MCP_ADC_BITS_10>;
5

6 using MCP3202 = MCP3xxx<MCP_ADC_CHANNELS_2, MCP_ADC_BITS_12>;
7

8 using MCP3204 = MCP3xxx<MCP_ADC_CHANNELS_4, MCP_ADC_BITS_12>;
9 using MCP3208 = MCP3xxx<MCP_ADC_CHANNELS_8, MCP_ADC_BITS_12>;

10

11 using MCP3302 = MCP3xxx<MCP_ADC_CHANNELS_4, MCP_ADC_BITS_13,
MCP_ADC_DATA_SIGNED>;↪→

12 using MCP3304 = MCP3xxx<MCP_ADC_CHANNELS_8, MCP_ADC_BITS_13,
MCP_ADC_DATA_SIGNED>;↪→

Listing A.2: Nazwane specjalizacje szablonu dla różnych układów z rodziny MCP3xxx

A.2.2 Obsługa przetwornika C/A

Do obsługi przetwornika cyfrowo-analogowego została stworzona od zera biblioteka, ba-
zująca na bibliotece dla ADC [27]. Są one bardzo zbliżone, główna różnica to enumeracje
specjalizujące szablon oraz kierunek komunikacji.
Najpierw zdefiniowano enumeracje, określające jego parametry: liczbę kanałów wejścio-
wych mcp_dac_channels_t oraz liczbę bitów mcp_dac_bits_t.

1 template <mcp_dac_channels_t C, mcp_dac_bits_t B>
2 class MCP4xxx;

95

Dawid Najda

Listing A.3: Szablon definicji klasy zarządzającej DAC

Większość metod jest nazwana tak samo i pełni dokładnie te same funkcje. Jedyna różnica
wynika z kierunku przepływu danych – nie odczytujemy żadnych informacji zwrotnych,
więc metoda parse_trx znika. Zastąpiona jest metodą write_trx, którą należy wykonać
przed wysłaniem transakcji. Wpisuje ona dane do wysłania do obiektu transakcji.
Dla wykorzystanego przetwornika C/A komenda składa się z 4 bitów: 1 bit wyboru kanału,
1 bit włączający wewnętrzny bufor napięcia odniesienia, 1 bit włączający dodatkowe dwu-
krotne wzmocnienie, oraz 1 bit pozwalający na wyłączenie kanału (wysoka impedancja,
ang. high-impendance, Hi-Z). Następnie przesyłane jest 12 bitów reprezentujących wartość
cyfrową, która po ostatnim cyklu zegara zostaje wpisana równolegle do pamięci przetwor-
nika i przekonwertowana na wartość analogową. Przetwornik ten nie wykorzystuje linii
MISO.

1 using MCP4801 = MCP4xxx<MCP_DAC_CHANNELS_1, MCP_DAC_BITS_8>;
2 using MCP4811 = MCP4xxx<MCP_DAC_CHANNELS_1, MCP_DAC_BITS_10>;
3 using MCP4821 = MCP4xxx<MCP_DAC_CHANNELS_1, MCP_DAC_BITS_12>;
4

5 using MCP4802 = MCP4xxx<MCP_DAC_CHANNELS_2, MCP_DAC_BITS_8>;
6 using MCP4812 = MCP4xxx<MCP_DAC_CHANNELS_2, MCP_DAC_BITS_10>;
7 using MCP4822 = MCP4xxx<MCP_DAC_CHANNELS_2, MCP_DAC_BITS_12>;
8

9 using MCP4901 = MCP4xxx<MCP_DAC_CHANNELS_1, MCP_DAC_BITS_8>;
10 using MCP4911 = MCP4xxx<MCP_DAC_CHANNELS_1, MCP_DAC_BITS_10>;
11 using MCP4921 = MCP4xxx<MCP_DAC_CHANNELS_1, MCP_DAC_BITS_12>;
12

13 using MCP4902 = MCP4xxx<MCP_DAC_CHANNELS_2, MCP_DAC_BITS_8>;
14 using MCP4912 = MCP4xxx<MCP_DAC_CHANNELS_2, MCP_DAC_BITS_10>;
15 using MCP4922 = MCP4xxx<MCP_DAC_CHANNELS_2, MCP_DAC_BITS_12>;

Listing A.4: Nazwane specjalizacje szablonu dla różnych układów z rodziny MCP4xxx

A.2.3 Obsługa ekspandera GPIO

Do obsługi ekspandera GPIO została stworzona biblioteka (po zmodyfikowaniu i zmoder-
nizowaniu innej dostępnej publicznie biblioteki) [25].

96

Dodatek A. Dokumentacja techniczna

1 class MCP23008
2 {
3 i2c_port_t port; // I2C_NUM_0 or I2C_NUM_1
4 uint8_t address; // Hardware address of the device
5

6 public:
7 uint8_t gpio = 0;
8

9 private:
10 enum class Register : uint8_t
11 {
12 IODIR = 0x00,
13 IPOL = 0x01,
14 GPINTEN = 0x02,
15 DEFVAL = 0x03,
16 INTCON = 0x04,
17 IOCON = 0x05,
18 GPPU = 0x06,
19 INTF = 0x07,
20 INTCAP = 0x08,
21 GPIO = 0x09,
22 OLAT = 0x0A,
23 };
24

25 public:
26 MCP23008(i2c_port_t p, uint8_t a = 0b000);
27 ~MCP23008();
28

29 esp_err_t init(bool out = false);
30 esp_err_t deinit();
31

32 esp_err_t set_pins(uint8_t val);
33 esp_err_t get_pins(uint8_t &val);
34

35 esp_err_t set_pins();
36 esp_err_t get_pins();
37

38 //
39

97

Dawid Najda

40 esp_err_t set_direction(uint8_t val);
41 esp_err_t set_input_polarity(uint8_t val);
42

43 esp_err_t set_interrupt_enabled(uint8_t val);
44 esp_err_t set_interrupt_control(uint8_t val);
45

46 esp_err_t set_default(uint8_t val);
47

48 esp_err_t set_config(bool s, bool d, bool o, bool i);
49 esp_err_t set_config(uint8_t val);
50

51 esp_err_t set_pullup(uint8_t val);
52

53 esp_err_t read_interrupt_flag(uint8_t &val);
54 esp_err_t read_interrupt_captured(uint8_t &val);
55

56 // Single bit manipulation
57 void set_bit(uint8_t b);
58 void clear_bit(uint8_t b);
59 void flip_bit(uint8_t b);
60

61 private:
62 esp_err_t read_reg(Register reg, uint8_t &d);
63 esp_err_t write_reg(Register reg, uint8_t d);
64 };

Listing A.5: Definicja klasy zarządzającej ekspanderem GPIO

Klasa zawiera następujące zmienne, podawane w konstruktorze: użyty port I2C (ESP32
posiada dwa), oraz 7-bitowy adres urządzenia. Protokół ten nie posiada obiektów reprezen-
tujących urządzenia, każda komenda jest całkowicie niezależna. Funkcja init() pozwala
więc jedynie na szybkie ustalenie kierunku wszystkich pinów.
Układ posiada kilka rejestrów, których adresy są wypisane w enumeracji. Prywatne me-
tody read_reg i write_reg służą do wysyłania poleceń po I2C, tzn. na odpowiednim
interfejsie przesyła kierunek komunikacji, adres urządzenia, adres rejestru i finalnie jego
wartość. Sterownik następnie wysyła sygnał zegara i poszczególne bity do odbiornika, lub
odczytuje produkowane przez niego dane.
Kilka stworzonych metod pozwala na ustawienie kierunku pinów (wejścia lub wyjścia), od-
czyt wartości, ustawianie wartości, włączanie przerwań, zmianę polaryzacji i inne, rzadziej
użyteczne funkcje układu.

98

Dodatek A. Dokumentacja techniczna

A.2.4 Odczytywanie ustawień

Dane dotyczące ustawień są przesyłane w formacie JSON. Aby uniknąć kilkukrotnego
kopiowania danych i niepotrzebnego zużycia pamięci (najpierw dane trafiają przez serwer,
a więc gniazdo do wewnętrznego bufora, potem z bufora są kopiowane do własnego bufora,
skąd są parsowane przez bibliotekę na strukturę obiektu JSON) została stworzona specjalna
klasa. Wyposażona jest ona w dwa interfejsy, jeden współpracuje z parserem JSON, drugi
z serwerem/gniazdem. Posiada mały wewnętrzny bufor oraz rozmiar wpisanych danych i
obecną pozycję.
Parser JSON dopuszcza kilka sposobów podania ciągu znaków. W tym przypadku uży-
teczny jest ten korzystający z iteratorów i właśnie w takim stylu został stworzony inter-
fejs. Każdy iterator posiada wskaźnik do obiektu do którego należy (istnieje tylko jeden
unikalny iterator dla każdego obiektu). Odczytuje on po kolei znaki z bufora rodzica, aż
do wyczerpania. Wtedy wywołuje metodę recv która pobiera nowe dane z gniazda do bu-
fora. Jeśli nowe dane nie istnieją – proces kończy się. Jeśli gdziekolwiek wystąpi błąd, jest
on zapisywany do późniejszego sprawdzenia. Iterator końcowy to specjalny przypadek;
taki, który nie posiada rodzica. To do niego porównywane są te zwykłe, wraz ze specjalną
implementacją kilku możliwych kombinacji (operator==).

1 class SocketReader
2 {
3 static constexpr int BUF_SIZE = 1024;
4

5 public:
6 esp_err_t err = ESP_OK;
7

8 private:
9 char buffer[BUF_SIZE];

10 size_t dataLen = 0;
11 size_t ptr = 0;
12 httpd_req_t *req;
13

14 void recv()
15 {
16 int ret = httpd_req_recv(req, buffer, BUF_SIZE);
17

18 if (ret < 0) // error
19 {
20 err = ret;
21 return;

99

Dawid Najda

22 }
23 dataLen = ret;
24 ptr = 0;
25 }
26

27 public:
28 SocketReader(httpd_req_t *r) : req(r)
29 {}
30 ~SocketReader() = default;
31

32 class iterator;
33

34 public:
35 iterator begin()
36 {
37 recv();
38 return iterator(this);
39 }
40

41 iterator end()
42 {
43 return iterator(nullptr);
44 }
45 };

Listing A.6: Kod klasy SocketReader służącej do odczytu przesyłanych danych fragmen-
tami

1 class iterator
2 {
3 friend class SocketReader;
4

5 public:
6 using iterator_category = std::input_iterator_tag;
7 using value_type = char;
8 using difference_type = std::ptrdiff_t;
9 using pointer = char *;

10 using reference = char &;

100

Dodatek A. Dokumentacja techniczna

11

12 private:
13 SocketReader *parent;
14

15 iterator(SocketReader *p) : parent(p) {}
16

17 public:
18 ~iterator() = default;
19

20 public:
21 char operator*() const
22 {
23 assert(parent->ptr < parent->dataLen);
24 return parent->buffer[parent->ptr];
25 }
26

27 iterator &operator++()
28 {
29 ++parent->ptr;
30 if (parent->ptr >= parent->dataLen)
31 parent->recv();
32 return *this;
33 }
34

35 bool operator==(const iterator &other) const
36 {
37 if (parent == other.parent) // If the same owner, then the same
38 return true;
39

40 if (other.parent == nullptr) // I am begin, other is end
41 return parent->ptr >= parent->dataLen;
42

43 if (parent == nullptr) // I am end (who TF uses this order?)
44 return other.parent->ptr >= other.parent->dataLen;
45

46 return false; // Completely different owners
47 }
48 };

101

Dawid Najda

Listing A.7: Kod wewnętrznej klasy iterator służącej jako interfejs dla parsera

A.2.5 Zadania

W celu implementacji wykonywania zadań musiały zostać stworzone klasy pozwalające
na przechowanie odpowiednio zagnieżdżonej struktury zadania w pamięci, klasy przecho-
wujące instrukcje, kody operacji, argumenty i inne dane.
Z głównej klasy przechowującej całe zadanie musi dać się w prosty sposób pobierać kolejne
instrukcje, zgodnie z przepływem programu. Oznacza to, że każda klasa która jakoś prze-
chowuje instrukcje, musi implementować taką metodę. Do tego klasy te muszą mieć jakiś
wewnętrzny stan, wskaźnik, indeks, itp. aby pamiętać obecną pozycję czy ilość wykonań
dla pętli. Z tego samego powodu, klasy te muszą być wyposażone w funkcję pozwalającą
na rekursywne zresetowanie całego programu w celu umożliwienia wielokrotnego wykony-
wania.
Najpierw została stworzona enumeracja, zawierająca dostępne operacje:

1 enum class OPCode : uint8_t
2 {
3 NOP = 0,
4 AIRDF, AIRDM, AIRDU,
5 AIEN, AIDIS, AIRNG,
6 AOVAL, AOGEN,
7 DIRD,
8 DOWR, DOSET, DORST, DOAND, DOXOR,
9 DELAY, GETTM,

10 };

Listing A.8: Enumeracja OPCode istniejących operacji

Potem stworzono strukturę która reprezentuje pojedynczą instrukcję, tzn. zawiera wyko-
nywaną operację, oraz opcjonalnie port której ta operacja dotyczy oraz dowolny argument
w postaci liczby całkowitej lub zmiennoprzecinkowej. Zmienne zostały ułożone tak, aby
rozmiar klasy był możliwie mały – uwzględniając tzw. padding jest to 8 bajtów.

1 struct Instruction
2 {
3 OPCode opc = OPCode::NOP;
4 uint8_t port = 0;

102

Dodatek A. Dokumentacja techniczna

5 union
6 {
7 uint32_t u = 0;
8 float f;
9 } arg;

10 };
11

12 using InstrPtr = const Instruction *;
13 constexpr InstrPtr nullinstr = nullptr;

Listing A.9: Klasa Instruction reprezentująca instrukcję

Następnie zostały utworzone klasy i typy, wymagane do implementacji zagnieżdżo-
nych list, używanych do przechowywania pętli i instrukcji. Wstępna deklaracja klasy
Loop, jej inteligentny wskaźnik, oraz klasa Statement (wyrażenie) bazująca na szablo-
nie std::variant która może być albo instrukcją albo pętlą.

1 class Loop;
2 using LoopPtr = std::unique_ptr<Loop>;
3 using Statement = std::variant<std::monostate, Instruction, LoopPtr>;

Listing A.10: Deklaracje klas i typów

Mając to, można było przystąpić do stworzenia klasy Scope (zasięg widoczności) która
przechowuje listę wyrażeń oraz posiada indeks do następnego zwracanego wyrażenia. Po-
siada ona metodę służącą do pobrania kolejnych instrukcji, metodę sprawdzającą czy
jakieś instrukcje jeszcze pozostają, metodę do rekursywnego resetu, metodę do restartu
(powrót do początkowej instrukcji) oraz dwie metody do tworzenia – jedna dodaje pętlę,
druga dodaje instrukcję.

1 class Scope
2 {
3 std::vector<Statement> statements;
4 mutable size_t index = 0;
5

6 public:
7 DEFAULT_CTOR(Scope);
8 DEFAULT_MV_CTOR(Scope);
9

103

Dawid Najda

10 InstrPtr getInstr() const;
11 bool finished() const;
12 void reset() const;
13 void restart() const;
14

15 Instruction& appendInstr(const Instruction& = Instruction());
16 Loop& appendLoop(size_t);
17 };

Listing A.11: Klasa Scope reprezentująca listę operacji (zasięg widoczności)

Klasa ta jest następnie użyta do stworzenia klasy Loop (pętla), która przechowuje własny
Scope i żądaną ilość powtórzeń oraz posiada licznik iteracji. Ma ona podobny interfejs co
Scope: metodę służącą do pobrania kolejnych instrukcji, metodę sprawdzającą czy jakieś
instrukcje jeszcze pozostają, metodę do rekursywnego resetu, metodę do restartu (wyze-
rowanie iteracji) oraz metodę pomocniczą – prosty getter – aby było możliwe wpisywanie
do niej instrukcji bez zbytniego duplikowania interfejsu poprzedniej klasy.

1 class Loop
2 {
3 Scope scope;
4 size_t max_iter = 0;
5 mutable size_t iter = 0;
6

7 public:
8 Loop(size_t = 0);
9 ~Loop();

10

11 InstrPtr getInstr() const;
12 bool finished() const;
13

14 void reset() const;
15 void restart() const;
16

17 Scope &getScope();
18 };

Listing A.12: Definicja klasy Loop przechowującej powtarzany Scope

104

Dodatek A. Dokumentacja techniczna

Finalnie powstała główna klasa Program reprezentująca całe zadanie. Przechowuje ona
główny Scope oraz implementuje metodę która parsuje tekst na drzewo i ewentualnie
zwraca błędy.

1 class Program
2 {
3 Scope scope;
4

5 public:
6 DEFAULT_CTOR(Program);
7 DEFAULT_MV_CTOR(Program);
8

9 bool parse(const std::string &, std::vector<std::string> &);
10

11 InstrPtr getInstr() const;
12 void reset() const;
13

14 size_t size() const;
15 bool isValid() const;
16 };

Listing A.13: Definicja klasy Program przetrzymującej zadanie

Metody służące do pobierania instrukcji są proste, Scope pobiera obecne wyrażenie,
sprawdza czy jest instrukcją, jeśli tak to zwraca ją. Jeśli nie, czyli jest pętlą, wywołuje
metodę klasy Loop. Klasa ta sprawdza ilość iteracji i wywołuje metodę własnego Scope.
Taka rekursja będzie się powtarzać aż do dotarcia do zwykłej instrukcji.
Najciekawszą metodą jest metoda parse klasy Program, która jest opisana poniżej.

A.2.6 Parser

Przygotowania do implementacji

Najpierw został stworzony typ, który przechowuje pewną funkcję. Pozwala to oddzielić
parsowanie poszczególnych instrukcji od samego kodu parsera. Funkcja ta przyjmuje listę
słów i ma zamienić je na argumenty w podanym obiekcie klasy Instruction. Zwraca
wartość prawda/fałsz na podstawie tego, czy udało się poprawnie odczytać wszystkie
argumenty.
Oprócz tego powstała struktura InstrLUTRow, który przechowuje dane potrzebne do par-
sowania instrukcji oraz informacje o niej. Są to: kod operacji, tekstowa reprezentacja

105

Dawid Najda

operacji, tekstowa lista wymaganych argumentów, opis działania instrukcji, wymagana
ilość argumentów, oraz callback do funkcji parsującej argumenty.
Finalnie, łącząc wszystko w całość, stworzona została tablica, tzw. lookup table która za-
wiera tak sparametryzowane wszystkie dostępne instrukcje. Część instrukcji posiada te
same argumenty, więc w celu duplikowania ich opisów oraz funkcji parsujących, zostały
wykorzystane makra preprocesora, które mogą być wstawione samodzielnie lub w połą-
czeniu z innymi fragmentami tekstu czy funkcjami.

1 using ParseCb = std::function<bool(const std::vector<std::string>&,
Instruction&)>; // in args, inout instr↪→

2

3 struct InstrLUTRow
4 {
5 Interpreter::OPCode opc;
6 const char *namestr;
7 const char *argstr;
8 const char *descstr;
9 size_t argcnt;

10 ParseCb parser;
11 };
12

13 #define CB_HELP(COND) [](const std::vector<std::string>& args,
Instruction& cs) { return (COND); }↪→

14 #define READ_IP (try_parse_integer(args[0], cs.port) && (cs.port >= 1 &&
cs.port <= 4))↪→

15 #define READ_OP (try_parse_integer(args[0], cs.port) && (cs.port >= 1 &&
cs.port <= 2))↪→

16 #define READ_DO (try_parse_integer(args[0], cs.arg.u, 0) && (cs.arg.u <=
0b1111))↪→

17

18 const std::vector<InstrLUTRow> CS_LUT = {
19 [...]
20 };

Listing A.14: Przygotowanie tablicy zawierającej spis instrukcji i informacji o nich

106

Dodatek A. Dokumentacja techniczna

Właściwy parser

Metoda Program::parse przyjmuje dwa argumenty, jeden to ciąg znaków stanowiący
program do odczytania, zaś drugi pozwala na zwrócenie ewentualnych napotkanych błę-
dów. Najpierw stworzony jest stos, przechowujący obecnyScope do którego dopisywane
są wyrażenia. W pętli odczytywane są kolejne linie (między znakami ;), wyrażenie to
jest kopiowane i dzielone na słowa, przy okazji czyszcząc białe znaki dookoła. Jeśli nie
ma żadnych słów - linia była pusta, można pominąć. Pierwsze słowo jest przenoszone do
osobnej zmiennej, reszta listy to argumenty.
Następnie rozpoczyna się faktyczne parsowanie wyrażenia. Najpierw sprawdzane są dwa
specjalne przypadki, które wymagają innego traktowania (nie są instrukcjami). Jeśli ope-
racja to LOOP, odczytywana jest pożądana ilość iteracji, nowa pętla zostaje dodana do
obecnego poziomu, i do stosu Scopeów zostaje dodany nowo utworzony, do którego będą
pisane dalsze wyrażenia. Jeśli operacja to END, obecny Scope zostaje zamknięty i usunięty
ze stosu, tak więc kolejne instrukcje będą dopisywane do poprzedniego, niższego poziomu.
W przeciwnym przypadku, można założyć że operacja to instrukcja do sprzętu (albo jakiś
nieistniejące polecenie). W tym momencie wykorzystywana jest wcześniej przygotowana
tablica opisująca instrukcje. Sprawdzana jest nazwa operacji, jeśli się zgadza to zapisy-
wany jest odpowiedni OPCode, sprawdzana jest wymagana liczba argumentów, i finalnie
uruchamiany jest parser argumentów. Jeśli w którymkolwiek momencie wystąpił błąd,
jest on zgłaszany do zwracanej listy. Tak samo w przypadku, jeśli cała tablica zostanie
sprawdzona i operacja nie została znaleziona. Po odczytaniu całego programu, następuje
sprawdzenie czy wszystkie Scope zostały zamknięte, jeśli nie to również zwracany jest
błąd. Jeśli nie został zwrócony żaden błąd, program jest poprawny i może zostać wyko-
nany.

1 #define PARSE_ERR(rsn) do { \
2 prgValid = false; \
3 err.push_back("Stmt #"s + std::to_string(line) + ": " + rsn); \
4 } while (0)
5

6 static const char *expstx = "expected syntax: ";
7

8 #define PARSE_ERR_SNTX(syntax) PARSE_ERR(expstx + syntax)
9

10 bool Program::parse(const std::string& str, std::vector<std::string>&
err)↪→

11 {
12 prgValid = true;
13

107

Dawid Najda

14 std::stack<Scope *, std::vector<Scope *>> scopes;
15 scopes.push(&scope); // main
16

17 size_t beg = 0;
18 size_t end = 0;
19 size_t line = 0;
20

21 while (beg < str.length())
22 {
23 ++line;
24

25 end = str.find(';', beg);
26 if (end == std::string::npos)
27 end = str.length();
28

29 if (end - beg > 32) // sanity check
30 {
31 beg = end + 1;
32 PARSE_ERR("malformed (too long, max 32)!");
33 continue;
34 }
35

36 std::string stmtstr = str.substr(beg, end - beg);
37 beg = end + 1;
38

39 std::vector<std::string> args = str_split_on_whitespace(stmtstr);
40

41 if (args.empty()) // no command
42 continue;
43

44 std::string cmd = std::move(args[0]);
45 args.erase(args.begin());
46

47 if (cmd == "LOOP")
48 {
49 size_t iters = 0;
50

51 if (args.size() != 1 || !try_parse_integer(args[0], iters))
52 PARSE_ERR_SNTX("LOOP <iterations (uint32)>");
53

108

Dodatek A. Dokumentacja techniczna

54 Loop &l = scopes.top()->appendLoop(iters);
55 scopes.push(&l.getScope());
56 }
57 else if (cmd == "END")
58 {
59 if (args.size() != 0)
60 PARSE_ERR_SNTX("END <no args>");
61

62 if (scopes.size() == 1)
63 PARSE_ERR("END: no Scope to end!");
64

65 scopes.pop();
66 }
67 else // regular command
68 {
69 Instruction cs;
70

71 for (const auto &lut : CS_LUT)
72 {
73 if (cmd == lut.namestr)
74 {
75 cs.opc = lut.opc;
76

77 if ((args.size() != lut.argcnt) || (lut.parser &&
!lut.parser(args, cs)))↪→

78 PARSE_ERR_SNTX(lut.namestr + ' ' + lut.argstr);
79

80 break;
81 }
82 }
83

84 if (cs.opc == OPCode::NOP)
85 PARSE_ERR("unknown command!");
86

87 scopes.top()->appendInstr(cs);
88 }
89 }
90

91 scopes.pop(); // main
92

109

Dawid Najda

93 line = -1;
94 for (size_t i = 0; i < scopes.size(); ++i)
95 PARSE_ERR("Scope has not been terminated (missing END)!");
96

97 return prgValid;
98 }

Listing A.15: Kod metody Program::parse odpowiedzialnej za konwersję z tekstu na
drzewo poleceń

A.2.7 Generatory

Klasa Generator

W celu stworzenia generatorów DDS, stworzona została specjalna klasa Generator. Prze-
chowuje ona listę składowych sygnałów, wraz z ich amplitudami. Posiada ona metodę
służącą do dodawania sygnałów oraz dwie metody do pobierania danych: jedna zwiększa
obecny numer próbki o jeden i generuje sygnał, druga zaś pozwala na podanie arbitralnego
punktu czasowego.

1 class Generator
2 {
3 public:
4 using index_t = Signal::index_t;
5

6 private:
7 using Signals = std::vector<std::pair<float, SignalHdl>>;
8

9 Signals signals;
10 index_t current_step;
11

12 public:
13 DEFAULT_CTOR(Generator);
14 DEFAULT_MV_CTOR(Generator);
15

16 void add(float a, SignalHdl &&s)
17 {
18 signals.emplace_back(a, std::move(s));
19 }

110

Dodatek A. Dokumentacja techniczna

20 float get(index_t i)
21 {
22 current_step = i;
23 return calculate();
24 }
25 float forward()
26 {
27 ++current_step;
28 return calculate();
29 }
30

31 private:
32 inline float calculate() const
33 {
34 float sum = 0;
35 for (const auto &s : signals)
36 sum += s.first * s.second->get(current_step);
37 return sum;
38 }
39 };

Listing A.16: Kod klasy Generator używanej do produkcji przebiegów

Klasa Signal i pomocnicze

Następnie została stworzona wirtualna klasa Signal, której klasy dziedziczące generują
kilka z najpopularniejszych przebiegów. Implementuje ona interfejs do generowania, po-
mocniczą metodę w celu konwersji z i do JSON oraz własną wersję sinusa (zamiana kąta
na wartość), z minimalnie pogorszoną dokładnością, ale dużo szybszą niż domyślna im-
plementacja języka.

1 class Signal
2 {
3 friend SignalHdl;
4

5 protected:
6 static inline float ang_to_sine(float ang) // Full sine cycle on <0,

1>, duplicated to negatives for simplicity↪→

7 {

111

Dawid Najda

8 bool flip = std::signbit(ang);
9 ang = std::abs(ang);

10 if (ang > 0.5f)
11 {
12 ang -= 0.5f;
13 flip = !flip;
14 }
15

16 float smpl = 16.0f * ang * (0.5f - ang);
17 return flip ? -smpl : smpl;
18 float bhskr = 4.0f * smpl / (5.0f - smpl);
19 return flip ? -bhskr : bhskr;
20 }
21

22 public:
23 using index_t = int32_t;
24

25 Signal() = default;
26 virtual ~Signal() = default;
27

28 virtual float get(index_t) const
29 {
30 return 0;
31 }
32 virtual SignalType type() const
33 {
34 return SignalType::Virtual;
35 }
36 };

Listing A.17: Kod wirtualnej klasy Signal służącej do generowania podstawowych
kształtów fal

Do tego powstała klasa pomocnicza do przechowywania sygnałów. Nie wystarczył zwykły
inteligentny wskaźnik, gdyż do serializacji wymagane było też stworzenie funkcji fabryki,
która tworzy odpowiednią klasę na podstawie podanego typu sygnału, natomiast jest ona
po prostu jego wrapperem.

112

Dodatek A. Dokumentacja techniczna

1 class SignalHdl
2 {
3 using SignalPtr = std::unique_ptr<Signal>;
4 SignalPtr ptr;
5

6 public:
7 DEFAULT_CTOR(SignalHdl);
8 DELETE_CP_CTOR(SignalHdl);
9 DEFAULT_MV_CTOR(SignalHdl);

10

11 SignalHdl(SignalPtr &&p) : ptr(std::move(p)) {}
12

13 Signal &operator*() const
14 {
15 return *ptr.get();
16 }
17 Signal *operator->() const
18 {
19 return ptr.get();
20 }
21 };
22

23 template <typename T>
24 SignalHdl make_signal(const json &j)
25 {
26 std::unique_ptr<Signal> sp = std::make_unique<T>(j.get<T>());
27 return SignalHdl(std::move(sp));
28 }
29

30 template <typename T, typename... Args>
31 SignalHdl make_signal(Args &&...args)
32 {
33 std::unique_ptr<Signal> sp =

std::make_unique<T>(std::forward<Args>(args)...);↪→

34 return SignalHdl(std::move(sp));
35 }

Listing A.18: Klasa SignalHdl do przechowywania klasy Signal oraz fabryki tejże

113

Dawid Najda

Klasy dziedziczące z Signal

Poniżej przedstawione są kody klas odpowiedzialnych za generowanie poszczególnych
kształtów oraz manipulację nimi.

1 class SignalConst : public Signal
2 {
3 public:
4 SignalConst() = default;
5 ~SignalConst() = default;
6

7 float get(index_t) const override
8 {
9 return 1;

10 }
11 SignalType type() const override
12 {
13 return SignalType::Const;
14 }
15 };

Listing A.19: Klasa SignalConst generująca przebieg o stałej wartości

1 class SignalImpulse : public Signal
2 {
3 public:
4 SignalImpulse() {}
5 ~SignalImpulse() = default;
6

7 float get(index_t i) const override
8 {
9 return i == 0;

10 }
11 SignalType type() const override
12 {
13 return SignalType::Impulse;
14 }
15 };

114

Dodatek A. Dokumentacja techniczna

Listing A.20: Klasa SignalImpulse generująca impuls w czasie 0

1 class SignalSine : public Signal
2 {
3 index_t T;
4

5 public:
6 SignalSine(index_t t = 1) : T(t) {}
7 ~SignalSine() = default;
8

9 float get(index_t i) const override
10 {
11 i %= T;
12 float ang = static_cast<float>(i) / T;
13 return ang_to_sine(ang);
14 }
15 SignalType type() const override
16 {
17 return SignalType::Sine;
18 }
19 };

Listing A.21: Klasa SignalSine generująca sinusoidę o podanym okresie

1 class SignalSquare : public Signal
2 {
3 index_t T;
4 index_t D;
5

6 public:
7 SignalSquare(index_t t = 1, index_t d = 0) : T(t), D(d) {}
8 ~SignalSquare() = default;
9

10 float get(index_t i) const override
11 {
12 i = i % T;

115

Dawid Najda

13 return (i < D) ? 1 : 0;
14 }
15 SignalType type() const override
16 {
17 return SignalType::Square;
18 }
19 };

Listing A.22: Klasa SignalSquare generująca prostokąt (typu PWM) o podanym okresie i
wypełnieniu

1 class SignalTriangle : public Signal
2 {
3 index_t T;
4 index_t P;
5

6 public:
7 SignalTriangle(index_t t = 1, index_t p = 1) : T(t), P(p) {}
8 ~SignalTriangle() = default;
9

10 float get(index_t i) const override
11 {
12 i = i % T;
13 if (i == 0) // to avoid division when P=0
14 return 0.0f;
15 if (i <= P) // rising pos edge
16 return static_cast<float>(i) / P;
17 if (i >= T - P) // rising neg edge
18 return static_cast<float>(i - T) / P;
19 // falling edge
20 return static_cast<float>(T / 2 - i) / (T / 2 - P);
21 }
22 SignalType type() const override
23 {
24 return SignalType::Triangle;
25 }
26 };

116

Dodatek A. Dokumentacja techniczna

Listing A.23: Klasa SignalTriangle generująca trójkąt, piłę i pośrednie o podanym
okresie i czasie szczytu

1 class SignalChirp : public Signal
2 {
3 index_t T;
4 float FS;
5 float FD;
6

7 public:
8 SignalChirp(index_t t = 1, float fs = 0, float fd = 0) : T(t), FS(fs),

FD(fd) {}↪→

9 ~SignalChirp() = default;
10

11 float get(index_t i) const override
12 {
13 i %= T;
14 float fr = static_cast<float>(i) / T;
15 float phs = i * (FS + FD * fr); // 0.5f *
16 float ang = std::fmod(phs, 1.0f);
17 return ang_to_sine(ang);
18 }
19 SignalType type() const override
20 {
21 return SignalType::Chirp;
22 }
23 };

Listing A.24: Klasa SignalChirp generująca świergot o podanym czasie, początkowej
częstotliwości i zmianie

1 class SignalChirpLog : public Signal
2 {
3 index_t T;
4 float FS;

117

Dawid Najda

5 float FR;
6

7 public:
8 SignalChirpLog(index_t t = 1, float fs = 0, float fr = 0) : T(t),

FS(fs), FR(fr) {}↪→

9 ~SignalChirpLog() = default;
10

11 float get(index_t i) const override
12 {
13 i %= T;
14 float fr = static_cast<float>(i) / T;
15

16 float phs = FS * T / std::log(FR) * (std::pow(FR, fr) - 1.0f);
17

18 float ang = std::fmod(phs, 1.0f);
19 return ang_to_sine(ang);
20 }
21 SignalType type() const override
22 {
23 return SignalType::ChirpLog;
24 }
25 };

Listing A.25: Klasa SignalChirpLog generująca świergot zmieniający się wykładniczo
w czasie (liniowo w skali logarytmicznej) o podanym czasie, początkowej częstotliwości i
mnożniku zmiany

1 class SignalRandom : public Signal
2 {
3 public:
4 SignalRandom() = default;
5 ~SignalRandom() = default;
6

7 float get(index_t) const override
8 {
9 constexpr float mult = -1.0 / std::numeric_limits<int32_t>::min();

10 int32_t val = std::bit_cast<int32_t>(esp_random());
11 return static_cast<float>(val) * mult;

118

Dodatek A. Dokumentacja techniczna

12 }
13 SignalType type() const override
14 {
15 return SignalType::Random;
16 }
17

18 friend void to_json(json &j, const SignalRandom &o) {}
19 friend void from_json(const json &j, SignalRandom &o) {}
20 };

Listing A.26: Klasa SignalRandom generująca wartości losowe w przedziale [−1, 1)

1 class SignalDelay : public Signal
2 {
3 index_t D;
4 SignalHdl S;
5

6 public:
7 SignalDelay(index_t d = 0, SignalHdl &&s = SignalHdl()) : D(d),

S(std::move(s)) {}↪→

8 ~SignalDelay() = default;
9

10 DEFAULT_MV_CTOR(SignalDelay);
11

12 float get(index_t i) const override
13 {
14 if (i < D)
15 return 0;
16 return S->get(i - D);
17 }
18 SignalType type() const override
19 {
20 return SignalType::Delay;
21 }
22 };

Listing A.27: Klasa SignalDelay generująca opóźnienie innego sygnału

119

Dawid Najda

1 class SignalAbsolute : public Signal
2 {
3 SignalHdl S;
4

5 public:
6 SignalAbsolute(SignalHdl &&s = SignalHdl()) : S(std::move(s)) {}
7 ~SignalAbsolute() = default;
8

9 DEFAULT_MV_CTOR(SignalAbsolute);
10

11 float get(index_t i) const override
12 {
13 return std::abs(S->get(i));
14 }
15 SignalType type() const override
16 {
17 return SignalType::Absolute;
18 }
19 };

Listing A.28: Klasa SignalAbsolute generująca wartość bezwzględną innego sygnału

1 class SignalClamp : public Signal
2 {
3 float L;
4 float H;
5 SignalHdl S;
6

7 public:
8 SignalClamp(float l = -1, float h = 1, SignalHdl &&s = SignalHdl()) :

L(l), H(h), S(std::move(s)) {}↪→

9 ~SignalClamp() = default;
10

11 DEFAULT_MV_CTOR(SignalClamp);
12

13 float get(index_t i) const override
14 {
15 return std::clamp(S->get(i), L, H);

120

Dodatek A. Dokumentacja techniczna

16 }
17 SignalType type() const override
18 {
19 return SignalType::Clamp;
20 }
21 };

Listing A.29: Klasa SignalClamp generująca inny sygnał ograniczony minimalną i
maksymalną wartością

1 class SignalLinearMap : public Signal
2 {
3 float A;
4 float B;
5 SignalHdl S;
6

7 public:
8 SignalLinearMap(float a = 1, float b = 0, SignalHdl &&s = SignalHdl())

: A(a), B(b), S(std::move(s)) {}↪→

9 ~SignalLinearMap() = default;
10

11 DEFAULT_MV_CTOR(SignalLinearMap);
12

13 float get(index_t i) const override
14 {
15 return A * S->get(i) + B;
16 }
17 SignalType type() const override
18 {
19 return SignalType::LinearMap;
20 }
21 };

Listing A.30: Klasa SignalLinearMap generująca inny sygnał przetworzony przez funkcję
liniową A · x + B

121

Dawid Najda

1 class SignalMultiply : public Signal
2 {
3 SignalHdl S1;
4 SignalHdl S2;
5

6 public:
7 SignalMultiply(SignalHdl &&s1 = SignalHdl(), SignalHdl &&s2 =

SignalHdl()) : S1(std::move(s1)), S2(std::move(s2)) {}↪→

8 ~SignalMultiply() = default;
9

10 DEFAULT_MV_CTOR(SignalMultiply);
11

12 float get(index_t i) const override
13 {
14 return S1->get(i) * S2->get(i);
15 }
16 SignalType type() const override
17 {
18 return SignalType::Multiply;
19 }
20 };

Listing A.31: Klasa SignalMultiply generująca iloczyn wartości dwóch innych sygnałów

122

Dodatek A. Dokumentacja techniczna

A.3 Przestrzenie nazw

W przypadku obsługi całego urządzenia, nie została tworzona klasa, lecz odpowiednia
przestrzeń nazw (ang. namespace). Ze względu na fakt, że istnieje tylko jedno “całe urzą-
dzenie”, oraz “zmienne” wymagane do konstrukcji takiego obiektu tak naprawdę są sta-
łymi, pozwala to kompilatorowi na dodatkową optymalizację kodu.

A.3.1 Komunikacja między wątkami

Przestrzeń nazw Communicator odpowiedzialna jest za zarządzanie komunikacją między
dwoma rdzeniami/wątkami – wątek serwera HTTP oraz wątek obsługujący sprzęt.
Interferjs służący do takiej komunikacji jest przedstawiony poniżej:

1 namespace Communicator
2 {
3 constexpr size_t buf_len = 128 * 1024;
4

5 esp_err_t cleanup();
6 esp_err_t init();
7 esp_err_t deinit();
8

9 esp_err_t time_settings(size_t);
10

11 bool write_4bytes(const int64_t &, const uint32_t &);
12

13 template <typename T>
14 bool write_data(const int64_t &, const T &);
15

16 etl::span<char> get_read();
17 void commit_read();
18

19 bool is_running();
20 bool has_data();
21

22 void start_running();
23 void ask_to_exit();
24

25 bool should_exit();
26 void confirm_exit();
27 };

123

Dawid Najda

Listing A.32: Interfejs przestrzeni Communicator używanej do komunikacji miedzy
wątkami

Zaś jej implementacja posiada dodatkowo następujące zmienne:

1 etl::bip_buffer_spsc_atomic<char, buf_len> bipbuf;
2 etl::span<char> current_read;
3

4 std::atomic_bool please_exit;
5 std::atomic_bool producer_running;
6

7 size_t time_bytes = 0;
8 size_t res_wrt_4b = 0;

Listing A.33: Zmienne “prywatne” przestrzeni Communicator

Funkcja time_settings pozwala na ustawienie liczby bajtów pomiarów czasu. Kilka funk-
cji/szablonów jest odpowiedzialnych za wpisywanie danych do bufora. Dwie funkcje służą
jako interfejs do odczytu danych z bufora. Ostatnia grupa funkcji pozwala na zarządzanie
stanem wątku interpretera. Funkcje is_running i has_data sprawdzają status wątku i
bufora; wraz ze startowaniem i zatrzymywaniem stanowią interfejs dla wątku serwera.
Funkcje should_exit oraz confirm_exit to interfejs wątku interpretera do zarządzania
swoją pracą.
W celu przechowywania danych została wykorzystana klasa bip_buffer biblioteki ETL w
wersji spsc – single producer, single consumer co pozwala na pozbycie się mechanizmów
zabezpieczających dostęp typu semafory czy mutex i oparcie na niepodzielności operacji
zapisu oraz odczytu – atomic. Przyspiesza to znacznie działanie oraz pozwala na dosłownie
jednoczesną pracę obu wątków. Nazwa bip_buffer jest skrótem od bipartite buffer – bufor
dwuczęściowy. Oznacza to, że w zarezerwowanej pamięci znajdują się jedna lub dwie
logiczne części. Kiedy pierwsza część dotrze do końca pamięci (lub pozostały fragment
jest niewystarczający), druga część zostaje rozpoczęta na początku pamięci. Kiedy cała
pierwsza część zostanie skonsumowana, druga część staje się pierwszą i proces powtarza
się. Taka reprezentacja pozwala na zapis i odczyt fragmentów o dowolnej długości, nawet
jeśli nie zapełniają równo całej pamięci do końca. Odczyt większego kawałka pamięci jest
wymagany do przesyłu danych ze względu na optymalizację (otoczka wiadomości zajmuje
miejsce i czas), zaś dostęp do wewnętrznej pamięci w celu uniknięcia kopiowania ich przed
wysłaniem.

124

Dodatek A. Dokumentacja techniczna

Funkcje piszące rezerwują pożądaną ilość miejsca, wstawiają tam dane i potwierdzają
zapis. Funkcje odczytujące pobierają możliwą ilość danych do odczytania, odczytują je
(przesyłają) i potwierdzają odczyt, co kasuje dane z bufora.

A.3.2 Serwer HTTP

WebServer (lub HTTP Server) to gotowy komponent w środowisku ESP-IDF pozwalający
na szybkie, proste i wygodne uruchomienie serwera obsługującego protokół HTTP na mi-
krokontrolerze. Automatycznie zajmuje się on kodowaniem i dekodowaniem danych w obie
strony.

Funkcje pomocnicze

Została utworzona pomocnicza funkcja konwertująca ciąg znaków tzw. query przekazy-
wane w URL na słownik/mapę w postaci klucz →wartość. Odczytuje ona query z wewnętrz-
nej pamięci dotyczącej danego zapytania, dzieli ją na pary, dzieli je na klucz i wartość
(jeśli możliwe) i wpisuje do słownika.

1 auto parse_query(httpd_req_t *r)
2 {
3 std::map<std::string, std::string> ret;
4 size_t qr_len = httpd_req_get_url_query_len(r) + 1;
5 std::string query(qr_len, '\0');
6 httpd_req_get_url_query_str(r, query.data(), qr_len);
7 query.erase(query.find('\0'));
8 size_t pos = 0;
9 do

10 {
11 size_t maxlen = query.find('&', pos); // find end of current param
12 if (maxlen == std::string::npos)
13 maxlen = query.length();
14 size_t middle = query.find('=', pos); // find break of current

param↪→

15 if (middle > maxlen) // no value, key only
16 {
17 std::string key = query.substr(pos, maxlen - pos);
18 ret.emplace(std::move(key), "");
19 }
20 else // key and value
21 {
22 std::string key = query.substr(pos, middle - pos);

125

Dawid Najda

23 std::string val = query.substr(middle + 1, maxlen - middle - 1);
24 ret.emplace(std::move(key), std::move(val));
25 }
26 pos = maxlen + 1;
27 } //
28 while (pos <= query.length());
29 // ret.erase("");
30 return ret;
31 }

Listing A.34: Funkcja parse_query tworząca słownik parametrów

Konfiguracja i start serwera

Najpierw przedstawione jest tworzenie i konfiguracja serwera. W zmiennych przechowy-
wane są wszystkie dostępne adresy, metoda dostępu do nich oraz funkcja odpowiedzialna
za przetworzenie zapytania. Funkcja uruchamiająca startuje serwer i przypina wszystkie
te adresy do wykonania przez niego.

1 static constexpr httpd_uri_t favicon_uri = {
2 .uri = "/favicon.ico",
3 .method = HTTP_GET,
4 .handler = favicon_handler,
5 .user_ctx = nullptr,
6 };
7

8 static constexpr httpd_uri_t welcome_uri = {
9 .uri = "/",

10 .method = HTTP_GET,
11 .handler = welcome_handler,
12 .user_ctx = nullptr,
13 };
14

15 static constexpr httpd_uri_t io_uri = {
16 .uri = "/io",
17 .method = HTTP_GET,
18 .handler = io_handler,
19 .user_ctx = nullptr,
20 };

126

Dodatek A. Dokumentacja techniczna

21

22 static constexpr httpd_uri_t settings_uri = {
23 .uri = "/settings",
24 .method = HTTP_POST,
25 .handler = settings_handler,
26 .user_ctx = nullptr,
27 };
28

29 static httpd_handle_t server = nullptr;
30

31 esp_err_t start_webserver()
32 {
33 httpd_config_t config = HTTPD_DEFAULT_CONFIG();
34 [...]
35

36 // Start the httpd server
37 ESP_LOGI(TAG, "Starting HTTP server on port: %d", config.server_port);
38

39 ESP_RETURN_ON_ERROR(
40 httpd_start(&server, &config),
41 TAG, "Failed to httpd_start!");
42

43 ESP_LOGI(TAG, "Registering URI handlers...");
44

45 ESP_RETURN_ON_ERROR(
46 httpd_register_uri_handler(server, &welcome_uri),
47 TAG, "Failed to httpd_register_uri_handler!");
48

49 ESP_RETURN_ON_ERROR(
50 httpd_register_uri_handler(server, &io_uri),
51 TAG, "Failed to httpd_register_uri_handler!");
52

53 ESP_RETURN_ON_ERROR(
54 httpd_register_uri_handler(server, &settings_uri),
55 TAG, "Failed to httpd_register_uri_handler!");
56

57 ESP_RETURN_ON_ERROR(
58 httpd_register_uri_handler(server, &favicon_uri),
59 TAG, "Failed to httpd_register_uri_handler!");
60

127

Dawid Najda

61 return ESP_OK;
62 }

Listing A.35: Funkcja start_webserver ustawiająca i uruchamiająca serwer oraz
zmienne pomocnicze

Przetwarzanie zapytań

Poniżej przedstawione są funkcje przetwarzające zapytania.
Najprostszą jest funkcja zwracająca ikonę – zawiera obrazek zakodowany jako bajty od
razu w pamięci i tylko wysyła je.

1 static esp_err_t favicon_handler(httpd_req_t *req)
2 {
3 httpd_resp_set_status(req, HTTPD_200);
4 httpd_resp_set_type(req, "image/x-icon");
5 httpd_resp_set_hdr(req, "Cache-Control", "max-age=31536000,

immutable");↪→

6

7 static constexpr char favicon[661] ={ [...] };
8

9 return httpd_resp_send(req, favicon, 661);
10 }

Listing A.36: Funkcja favicon_handler wysyłająca plik favicon.ico

Później jest funkcja która wysyła wiadomość powitalną – tworzy obiekt JSON, wpisuje do
niego wiadomość, dane, opis instrukcji, przykładowy generator, istniejące sygnały, itd.

1 static esp_err_t welcome_handler(httpd_req_t *req)
2 {
3 httpd_resp_set_status(req, HTTPD_200);
4 httpd_resp_set_type(req, "application/json");
5

6 ordered_json doc = create_ok_response();
7

8 doc["message"] = "Welcome!\n"
9 "Last compilation time: ${data.cmpl.date}

${data.cmpl.time}.\n"↪→

128

Dodatek A. Dokumentacja techniczna

10 [...];
11

12 doc["data"]["cmpl"]["date"] = __DATE__;
13 doc["data"]["cmpl"]["time"] = __TIME__;
14 [...]
15

16 doc["data"]["prg"]["cmds"] = ordered_json::array();
17 for (const auto &lut : CS_LUT)
18 {
19 auto cmd = ordered_json::object();
20 cmd["sntx"] = ""s + lut.namestr + ' ' + lut.argstr;
21 cmd["desc"] = lut.descstr;
22 doc["data"]["prg"]["cmds"].push_back(cmd);
23 }
24

25 Generator gen;
26 gen.add(1.0f, make_signal<SignalSine>(1000));
27 doc["data"]["prg"]["gnrtr"] = static_cast<json>(gen);
28

29 doc["data"]["prg"]["wvfrms"] = ordered_json::array();
30 doc["data"]["prg"]["wvfrms"].push_back(SignalType::Const);
31 [...]
32

33 std::string out = doc.dump();
34

35 ESP_LOGI(TAG, "Handler done.");
36 return httpd_resp_send(req, out.c_str(), out.length());
37 }

Listing A.37: Funkcja welcome_handler wysyłająca odpowiedź powitalną w formacie
JSON

Następnie przechodzimy do jednego z dwóch głównych punktów końcowych, odpowiedzial-
nego za wgrywanie ustawień do urządzenia. Parsuje on przesłany tekst na obiekt JSON, z
którego następnie wyciąga generatory i zadanie do wykonania, sprawdza je, wgrywa do
pamięci i odsyła wiadomość ze statusem i ewentualnymi napotkanymi błędami.

1 static esp_err_t settings_handler(httpd_req_t *req)
2 {

129

Dawid Najda

3 // Make sure that the producer is *not* running
4 if (Communicator::check_if_running())
5 return httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR,

"Device is busy");↪→

6

7 ESP_LOGV(TAG, "Req len: %" PRIu16, req->content_len);
8

9 Interpreter::Program program;
10 std::vector<Generator> generators;
11 std::vector<std::string> errors;
12

13 ESP_LOGD(TAG, "Reading JSON...");
14 SocketReader reader(req);
15 ordered_json q = ordered_json::parse(reader.begin(), reader.end(),

nullptr, false, true);↪→

16

17 if (reader.err) // failed to read from socket
18 {
19 ESP_LOGW(TAG, "Reader error");
20 if (reader.err == HTTPD_SOCK_ERR_TIMEOUT)
21 httpd_resp_send_408(req);
22 return reader.err;
23 }
24

25 if (!q.is_discarded()) // if JSON is valid
26 {
27 if (q.contains("generators"))
28 {
29 ESP_LOGD(TAG, "Generators exists, trying...");
30 if (q.at("generators").is_array())
31 {
32 size_t count = q.at("generators").size();
33 generators.reserve(count);
34

35 for (auto &[key, val] : q.at("generators").items())
36 {
37 try
38 {
39 Generator g = val.get<Generator>();
40 generators.push_back(std::move(g));

130

Dodatek A. Dokumentacja techniczna

41 }
42 catch (ordered_json::exception &e)
43 {
44 generators.emplace_back();
45 errors.push_back("Generator #"s + key + " failed to

parse: " + e.what());↪→

46 ESP_LOGW(TAG, "Generator failed to parse: %s",
e.what());↪→

47 }
48 val = nullptr;
49 }
50 }
51 else
52 errors.push_back("\"generators\" is not an array!");
53 q.erase("generators");
54 }
55 if (q.contains("task"))
56 {
57 ESP_LOGD(TAG, "Task exists, trying...");
58 if (q.at("task").is_string())
59 {
60 const std::string &prg = q.at("task").get_ref<const

std::string &>();↪→

61 program.parse(prg, errors);
62 ESP_LOGD(TAG, "Task has %u statements", program.size());
63 }
64 else
65 errors.push_back("\"task\" is not a string!");
66 q.erase("task");
67 }
68 }
69 else
70 errors.push_back("JSON is invalid!");
71

72 q.clear();
73

74 ESP_LOGD(TAG, "Moving configs...");
75 if (Board::move_config(program, generators) != ESP_OK)
76 return httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR,

"Device is busy");↪→

131

Dawid Najda

77

78 //
79 ESP_LOGD(TAG, "Responding...");
80

81 httpd_resp_set_type(req, "application/json");
82

83 if (!errors.empty())
84 {
85 ordered_json res = create_err_response(errors);
86 errors.clear();
87 std::string out = res.dump();
88 res.clear();
89 httpd_resp_set_status(req, HTTPD_400);
90 return httpd_resp_send(req, out.c_str(), out.length());
91 }
92

93 ordered_json res = create_ok_response();
94 res["message"] = "Settings have been validated. No errors found.";
95

96 std::string out = res.dump();
97 res.clear();
98

99 ESP_LOGI(TAG, "Handler done.");
100 return httpd_resp_send(req, out.c_str(), out.length());
101 }

Listing A.38: Funkcja settings_handler odpowiedzialna za wgrywanie ustawień

Najważniejszym (choć niekoniecznie najbardziej skomplikowanym) punktem końcowym
jest ten odpowiedzialny za odsyłanie zmierzonych danych do użytkownika. Odczytuje on
żądaną liczbę bajtów dla pomiarów czasu i przekazuje ją do komunikatora. Czyści bufor
danych, przygotowuje się do konsumowania danych, sygnalizuje wątkowi interpretera że
może zacząć produkować dane, i zaczyna je odczytywać i wysyłać do użytkownika. Pętla
trwa dopóki interpreter nie zakończył pracy lub pozostają jakieś dane do wysłania. W
tym czasie sprawdzana jest dostępność danych w buforze, jeśli istnieją to są one wysyłane
i usuwane. Jeśli nie, sprawdzane jest połączenie z klientem. W obu przypadkach, jeśli
nastąpiło niepowodzenie tzn. rozłączenie, interpreter jest powiadamiany i kończy przed-
wcześnie swoją pracę. Po każdej iteracji, zadanie serwera na moment zwalnia rdzeń dla
innych zadań, np. stosu TCP/IP, komunikacji Wi-Fi, itd.

132

Dodatek A. Dokumentacja techniczna

1 static esp_err_t io_handler(httpd_req_t *req)
2 {
3 // Make sure that the producer is *not* running
4 if (Communicator::is_running())
5 return httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR,

"Device is busy");↪→

6

7 auto qr = parse_query(req);
8

9 size_t time_bytes = 0;
10 if (auto it = qr.find("tb"); it != qr.end())
11 try_parse_integer(it->second, time_bytes);
12

13 if (time_bytes > 8)
14 time_bytes = 8;
15

16 // Apply changes
17 ESP_LOGI(TAG, "Preparing Communicator...");
18 Communicator::time_settings(time_bytes);
19 Communicator::cleanup();
20

21 // Start consumer
22 ESP_LOGI(TAG, "Running consumer...");
23 httpd_resp_set_type(req, "application/octet-stream");
24

25 size_t total_sent = 0;
26 esp_err_t ret = ESP_OK;
27

28 // Start producer
29 ESP_LOGI(TAG, "Notifying producer...");
30 Communicator::start_running();
31

32 while (Communicator::is_running() || Communicator::has_data())
33 {
34 auto rsvd = Communicator::get_read();
35

36 if (rsvd.size() != 0) // if something to send, send
37 {
38 ESP_LOGI(TAG, "Sending %zu bytes...", rsvd.size());

133

Dawid Najda

39

40 ret = httpd_resp_send_chunk(req, rsvd.data(), rsvd.size());
41 total_sent += rsvd.size();
42 }
43 else // if no new data
44 {
45 if (!httpd_req_check_live(req)) // check if dead, ask to stop
46 {
47 ESP_LOGW(TAG, "Client disconnected...");
48 ret = HTTPD_SOCK_ERR_TIMEOUT;
49 }
50 }
51

52 Communicator::commit_read();
53

54 if (ret != ESP_OK)
55 break;
56

57 taskYIELD();
58 }
59

60 Communicator::ask_to_exit();
61

62 while (Communicator::is_running())
63 vTaskDelay(pdMS_TO_TICKS(10));
64

65 ESP_LOGW(TAG, "Total sent: %zu bytes...", total_sent);
66

67 if (ret != ESP_OK)
68 return ret;
69

70 ESP_LOGI(TAG, "Handler done.");
71 return httpd_resp_send_chunk(req, nullptr, 0);
72 }

Listing A.39: Funkcja io_handler uruchamiająca interpreter i przesyłająca pomiary do
użytkownika

134

Dodatek A. Dokumentacja techniczna

A.3.3 Obsługa sprzętu i interpreter

Główną częścią programu jest oczywiście połączona obsługa wszystkich komponentów.
Została w tym celu stworzona przestrzeń Board (oznaczająca całą płytkę).
Zewnętrzny interfejs jest bardzo niewielki. Zostały stworzone enumeracje reprezentujące
analogowe porty wejściowe i wyjściowe, oraz enumeracja reprezentująca zakres wejścia, a
więc dzielniki lub wzmacniacz. Do tego kilka stałych numerycznych, jak napięcie odnie-
sienia, transrezystancja (Ω, V

A) wejścia prądowego czy transkonduktancja (S, A
V) wyjścia

prądowego, ze względu na fakt, że przetworniki operują napięciami; wartości dzielników
wejść i wzmacniacza prądowego.

1 enum class Input : uint8_t
2 {
3 None = 0,
4 In1 = 1,
5 In2 = 2,
6 In3 = 3,
7 In4 = 4,
8 Inv = 5,
9 };

10

11 enum class Output : uint8_t
12 {
13 None = 0,
14 Out1 = 1,
15 Out2 = 2,
16 Inv = 3,
17 };
18

19 enum class AnIn_Range : uint8_t
20 {
21 OFF = 0,
22 Min = 1,
23 Med = 2,
24 Max = 3,
25 };
26

27 namespace Board
28 {
29 constexpr const char *const TAG = "IOBoard";

135

Dawid Najda

30

31 constexpr double u_ref = 4.096;
32 constexpr double out_ref = u_ref / 2 / 2 * 10;
33

34 constexpr int32_t ItoU_input = 1;
35 constexpr int32_t UtoI_output = 100; // 100mA per 10V => 1V = 0.01A
36

37 // Divider settings: Min: 1V=>1V, Med: 10V=>1V, Max: 100V=>1V
38 constexpr int32_t volt_divs[4] = {0, 1, 10, 100}; // ratios of

dividers | min range => min attn↪→

39 // Gains settings: R=1Ohm; Min: 1mA=>1V, Med: 10mA=>1V, Max:
100mA=>1V↪→

40 constexpr int32_t curr_gains[4] = {5, 1000, 100, 10}; // gains of
instr.amp | min range => max gain↪→

41

42 esp_err_t init();
43 esp_err_t deinit();
44

45 esp_err_t move_config(Interpreter::Program &, std::vector<Generator>
&);↪→

46 esp_err_t give_sem_emergency();
47 esp_err_t test();
48 };

Listing A.40: Interfejs przestrzeni Board

W implementacji dostępne są również przedstawione niżej “prywatne” zmienne (a raczej
stałe). Określają one liczbę wejść i wyjść analogowych, cyfrowych, piny GPIO odpowie-
dzialne za wejścia i wyjścia cyfrowe. Zostają wstępnie stworzone obiekty ekspanderów i
przetworników. Inicjalizowane są zmienne stanu wyjść cyfrowych oraz przedziałów wejść
analogowych. Rezerwowane jest miejsce do przechowywania programu i generatorów. Na-
stępna część to zmienne nie dotyczące bezpośrednio sprzętu, lecz implementacji różnych
rozwiązań – wątek interpretera, mutex dostępu do danych, timer synchronizujący wyko-
nywanie, semafor który jest przez niego przełączany, zmienne pomocnicze do zarządzania
czasem i synchronizacją. Finalnie przygotowane są zmienne pomocnicze przechowujące
transakcje do przetworników, maski bitowe pinów i tablice pomocnicze do zapisu wyjść.

1 namespace
2 {

136

Dodatek A. Dokumentacja techniczna

3 // SPECIFICATION
4 constexpr size_t an_in_num = 4;
5 constexpr size_t an_out_num = 2;
6

7 constexpr size_t dg_in_num = 4;
8 constexpr size_t dg_out_num = 4;
9

10 // HARDWARE SETUP
11 constexpr std::array<gpio_num_t, dg_in_num> dig_in = {GPIO_NUM_34,

GPIO_NUM_35, GPIO_NUM_36, GPIO_NUM_39};↪→

12 constexpr std::array<gpio_num_t, dg_out_num> dig_out = {GPIO_NUM_4,
GPIO_NUM_25, GPIO_NUM_26, GPIO_NUM_27};↪→

13

14 MCP23008 expander_a(I2C_NUM_0, 0b000);
15 MCP23008 expander_b(I2C_NUM_0, 0b001);
16

17 MCP3204 adc(SPI3_HOST, GPIO_NUM_5, 2'000'000);
18 MCP4922 dac(SPI2_HOST, GPIO_NUM_15, 20'000'000);
19

20 // STATE MACHINE
21 uint32_t dg_out_state = 0;
22 std::array<AnIn_Range, an_in_num> an_in_range;
23

24 // CONFIG
25 std::vector<Generator> generators;
26 Interpreter::Program program;
27

28 //================================//
29 // HELPERS //
30 //================================//
31

32 // SOFTWARE SETUP
33 TaskHandle_t execute_task = nullptr;
34 std::mutex data_mutex;
35

36 gptimer_handle_t sync_timer = nullptr;
37 gptimer_alarm_config_t sync_alarm_cfg = {};
38

39 #if SYNC_USE_NOTIF_NOT_SEM
40 constexpr UBaseType_t notif_idx = 0;

137

Dawid Najda

41 #else
42 DRAM_ATTR SemaphoreHandle_t sync_semaphore;
43 #endif
44

45 // EXECUTION
46 uint64_t time_now = 0;
47 uint64_t &time_sync = sync_alarm_cfg.alarm_count;
48 DRAM_ATTR bool wait_for_sync = false;
49

50 // ADC/DAC TRANSACTIONS
51 std::array<spi_transaction_t, an_in_num> trx_in;
52 std::array<spi_transaction_t, an_out_num> trx_out;
53

54 // CONSTANTS
55 constexpr uint32_t dg_out_mask = (1 << dg_out_num) - 1;
56 constexpr uint32_t dg_in_mask = (1 << dg_in_num) - 1;
57

58 // LUT
59 constexpr size_t dg_out_lut_sz = 1 << dg_out_num;
60 constexpr std::array<uint32_t, dg_out_lut_sz> dg_out_lut_s = []()
61 {
62 std::array<uint32_t, dg_out_lut_sz> ret = {};
63 for (size_t in = 0; in < dg_out_lut_sz; ++in)
64 for (size_t b = 0; b < dg_out_num; ++b)
65 if (in & BIT(b))
66 ret[in] |= BIT(dig_out[b]);
67 return ret;
68 }();
69 constexpr std::array<uint32_t, dg_out_lut_sz> dg_out_lut_r = []()
70 {
71 std::array<uint32_t, dg_out_lut_sz> ret = {};
72 for (size_t in = 0; in < dg_out_lut_sz; ++in)
73 for (size_t b = 0; b < dg_out_num; ++b)
74 if (~in & BIT(b))
75 ret[in] |= BIT(dig_out[b]);
76 return ret;
77 }();
78

79 // I/O conversion
80 constexpr int32_t halfrangein = MCP3204::ref / 2;

138

Dodatek A. Dokumentacja techniczna

81 constexpr int32_t halfrangeout = MCP4922::ref / 2;
82 }

Listing A.41: Zmienne “prywatne” przestrzeni Board

Funkcje obsługujące sprzęt (backend)

Teraz zostaną omówione poszczególne ważniejsze funkcje, również te które są dostępne
tylko w implementacji. Interfejs zostanie przedstawiony na końcu, gdyż przeważnie używa
tych od implementacji.
Funkcje konwertujące unipolarny kod z przetworników na bipolarną wartość lub odwrotnie
– proste przesunięcie.

1 static inline constexpr int32_t adc_offset(MCP3204::out_t val)
2 {
3 return static_cast<int32_t>(val) - halfrangein;
4 }
5

6 static inline constexpr MCP4922::in_t dac_offset(int32_t val)
7 {
8 return val + halfrangeout;
9 }

Listing A.42: Funkcje konwertujące kod na wartość symetryczną lub odwrotnie

Funkcja-szablon do konwersji pomiaru wejścia na wartość rzeczywistą. Przyjmuje typ nu-
meryczny i opcjonalny mnożnik, w celu uniknięcia powtarzania kodu. Przesuwa wartość
ze względu na bipolarność wejść, mnoży przez napięcie odniesienia, mnożnik oraz współ-
czynnik dzielnika lub wzmacniacza.

1 template <typename num_t, int32_t mul = 1>
2 static num_t bin_to_phy(Input in, int32_t sum, int32_t cnt)
3 {
4 constexpr num_t ratio = u_ref * mul / halfrangein;
5

6 if (in == Input::None || in == Input::Inv) [[unlikely]]
7 return 0;
8

9 size_t inidx = static_cast<size_t>(in) - 1;

139

Dawid Najda

10 size_t rngidx = static_cast<size_t>(an_in_range[inidx]);
11 switch (in)
12 {
13 case Input::In1:
14 case Input::In2:
15 case Input::In3:
16 return sum * ratio * volt_divs[rngidx] / cnt;
17 case Input::In4:
18 return sum * ratio / curr_gains[rngidx] / cnt * ItoU_input;
19 default:
20 return 0;
21 }
22 }

Listing A.43: Funkcja-szablon bin_to_phy konwertująca kod binarny na wartość rzeczy-
wistą

Ta funkcja działa analogicznie, lecz w drugą stronę. Zamienia wartość rzeczywistą na kod
dla przetwornika, biorąc pod uwagę sposób implementacji wyjść.

1 static MCP4922::in_t phy_to_dac(Output out, float val)
2 {
3 constexpr float ratio = halfrangeout / out_ref;
4

5 if (out == Output::None || out == Output::Inv) [[unlikely]]
6 return 0;
7

8 if (out == Output::Out2)
9 val *= UtoI_output;

10

11 if (val >= out_ref) [[unlikely]]
12 return MCP4922::max;
13 if (val <= -out_ref) [[unlikely]]
14 return MCP4922::min;
15

16 return dac_offset(std::round(val * ratio));
17 }

140

Dodatek A. Dokumentacja techniczna

Listing A.44: Funkcja phy_to_dac zamieniająca wartość rzeczywistą na kod przetwornika

Teraz zaczynają się implementacje poszczególnych instrukcji, używane w interpreterze.
Funkcja ustawiająca zakresy wejść analogowych. Przyjmuje wejście i zakres. Zapisuje do
tablicy.

1 static esp_err_t analog_input_range(Input in, AnIn_Range r)
2 {
3 if (in == Input::None || in >= Input::Inv) [[unlikely]]
4 return ESP_ERR_INVALID_ARG;
5

6 uint8_t pos = static_cast<uint8_t>(in) - 1;
7 an_in_range[pos] = r;
8 return ESP_OK;
9 }

Listing A.45: Funkcja analog_input_range ustawiająca zakres wejść portu

Funkcja wyłączająca wejścia analogowe. Wysyła do obu ekspanderów same zera, co po-
woduje rozłączenie wszystkich styczników.

1 static esp_err_t analog_inputs_disable()
2 {
3 ESP_RETURN_ON_ERROR(
4 expander_a.set_pins(0x00),
5 TAG, "Failed to expander_a.set_pins!");
6 ESP_RETURN_ON_ERROR(
7 expander_b.set_pins(0x00),
8 TAG, "Failed to expander_a.set_pins!");
9

10 return ESP_OK;
11 }

Listing A.46: Funkcja analog_inputs_disable wyłączająca wejścia analogowe

Funkcja analog_inputs_enable włączająca wejścia analogowe. Ustawia styczniki za po-
mocą ekspanderów zgodnie z ustawionymi wcześniej zakresami.

1 static esp_err_t analog_inputs_enable()

141

Dawid Najda

2 {
3 uint8_t lower = range_to_expander_steering(an_in_range[0]) |

range_to_expander_steering(an_in_range[1]) << 4;↪→

4 uint8_t upper = range_to_expander_steering(an_in_range[2]) |
range_to_expander_steering(an_in_range[3]) << 4;↪→

5

6 ESP_RETURN_ON_ERROR(
7 expander_a.set_pins(lower),
8 TAG, "Failed to expander_a.set_pins!");
9 ESP_RETURN_ON_ERROR(

10 expander_b.set_pins(upper),
11 TAG, "Failed to expander_b.set_pins!");
12

13 return ESP_OK;
14 }

Listing A.47: Funkcja analog_inputs_enable włączająca wejścia analogowe

Funkcja wykonująca pomiar wejścia. Przyjmuje wejście, zwraca do podanej zmiennej od-
czytany kod.

1 static esp_err_t analog_input_read(Input in, MCP3204::out_t &out)
2 {
3 if (in == Input::None || in == Input::Inv) [[unlikely]]
4 return ESP_ERR_INVALID_ARG;
5

6 spi_transaction_t &trx = trx_in[static_cast<size_t>(in) - 1];
7

8 ESP_RETURN_ON_ERROR(
9 adc.send_trx(trx),

10 TAG, "Failed to ADC send_trx!");
11 ESP_RETURN_ON_ERROR(
12 adc.recv_trx(),
13 TAG, "Failed to ADC recv_trx!");
14

15 out = adc.parse_trx(trx);
16 return ESP_OK;
17 }

142

Dodatek A. Dokumentacja techniczna

Listing A.48: Funkcja analog_input_read wykonująca pomiar wejścia

Funkcja wykonująca przeciwną operację – wpisuje słowo do przetwornika na podane wyj-
ście. Przyjmuje wyjście i kod.

1 static esp_err_t analog_output_write(Output out, MCP4922::in_t val)
2 {
3 if (out == Output::None || out == Output::Inv) [[unlikely]]
4 return ESP_ERR_INVALID_ARG;
5

6 spi_transaction_t &trx = trx_out[static_cast<size_t>(out) - 1];
7 dac.write_trx(trx, val);
8

9 ESP_RETURN_ON_ERROR(
10 dac.send_trx(trx),
11 TAG, "Failed to dac.send_trx!");
12 ESP_RETURN_ON_ERROR(
13 dac.recv_trx(),
14 TAG, "Failed to dac.recv_trx!");
15

16 return ESP_OK;
17 }

Listing A.49: Funkcja analog_output_write wpisująca kod do przetwornika

Jest jeszcze jedna funkcja pisząca do wyjść analogowych. Służy ona do początkowego wy-
zerowania ich – domyślnie po włączeniu urządzenia są one w stanie wysokiej impedancji,
a więc dzielnik powoduje pulldown i przyjęcie skrajnej ujemnej wartości. Tutaj wysta-
wiana jest wartość odpowiadająca fizycznemu zeru. Używana jest też do sprzątania po
skończeniu wykonywania programu.

1 static esp_err_t analog_outputs_reset()
2 {
3 constexpr MCP4922::in_t midpoint = MCP4922::ref / 2;
4 ESP_RETURN_ON_ERROR(
5 analog_output_write(Output::Out1, midpoint),
6 TAG, "Failed to analog_output_write 1!");
7

8 ESP_RETURN_ON_ERROR(
9 analog_output_write(Output::Out2, midpoint),

143

Dawid Najda

10 TAG, "Failed to analog_output_write 2!");
11

12 return ESP_OK;
13 }

Listing A.50: Funkcja analog_outputs_reset zerująca wyjścia analogowe.

Funkcja ustawiająca wyjścia cyfrowe. Włącza i wyłącza odpowiednie piny pisząc do reje-
strów write-1-to-set oraz write-1-to-clear .

1 static void digital_outputs_to_registers()
2 {
3 dg_out_state &= dg_out_mask;
4 REG_WRITE(GPIO_OUT_W1TS_REG, dg_out_lut_s[dg_out_state]);
5 REG_WRITE(GPIO_OUT_W1TC_REG, dg_out_lut_r[dg_out_state]);
6 }

Listing A.51: Funkcja digital_outputs_to_registers ustawiająca wyjścia cyfrowe.

Kilka funkcji służących do zarządzania zmienną stanu wyjść cyfrowych.

1 static void digital_outputs_wr(uint32_t in)
2 {
3 dg_out_state = in;
4 digital_outputs_to_registers();
5 }
6 static void digital_outputs_set(uint32_t in)
7 {
8 dg_out_state |= in;
9 digital_outputs_to_registers();

10 }
11 static void digital_outputs_rst(uint32_t in)
12 {
13 dg_out_state &= ~in;
14 digital_outputs_to_registers();
15 }
16 static void digital_outputs_and(uint32_t in)
17 {
18 dg_out_state &= in;

144

Dodatek A. Dokumentacja techniczna

19 digital_outputs_to_registers();
20 }
21 static void digital_outputs_xor(uint32_t in)
22 {
23 dg_out_state ^= in;
24 digital_outputs_to_registers();
25 }

Listing A.52: Funkcje zarządzające wyjściami cyfrowymi

Funkcja zwracająca stan wejść cyfrowych. Odczytuje stan pinów z rejestru. Po kolei spraw-
dza wartość bitów i kompresuje je koło siebie w 4-bitową liczbę całkowitą. Rozwinięcie
pętli pozwala na maksymalną optymalizację (również dzięki zastosowaniu wielu wartości
constexpr).

1 #pragma GCC push_options
2 #pragma GCC optimize("unroll-loops")
3 static void digital_inputs_read(uint32_t &out)
4 {
5 uint32_t in = REG_READ(GPIO_IN1_REG);
6 out = 0;
7 for (size_t b = 0; b < dg_in_num; ++b)
8 out |= !!(in & BIT(dig_in[b] - 32)) << b;
9 }

10 #pragma GCC pop_options

Listing A.53: Funkcja digital_inputs_read odczytująca stan wejść cyfrowych.

Ostania funkcja do zarządzania portów służy do resetu stanu wejść i wyjść. Czyści tablicę
zakresów, wyłącza styczniki, wyłącza wyjścia cyfrowe, zeruje wyjścia analogowe. Używana
do inicjalizacji i sprzątania po skończeniu wykonywania programu.

1 static esp_err_t port_cleanup()
2 {
3 for (size_t i = 0; i < an_in_num; ++i)
4 an_in_range[i] = AnIn_Range::OFF;
5

6 digital_outputs_wr(0);
7

145

Dawid Najda

8 ESP_RETURN_ON_ERROR(
9 analog_inputs_disable(),

10 TAG, "Failed to analog_inputs_disable!");
11

12 ESP_RETURN_ON_ERROR(
13 analog_outputs_reset(),
14 TAG, "Failed to analog_outputs_reset!");
15

16 return ESP_OK;
17 }

Listing A.54: Funkcja port_cleanup inicjalizująca/resetująca wejścia i wyjścia.

Poniżej przedstawiony jest callback timera – funkcja wykonywana jako przerwanie w mo-
mencie kiedy napotka on oczekiwaną wartość czasu. Jeśli interpreter czeka na synchroni-
zację, daje semafor/powiadomienie i oddaje wykonywanie wątkowi.

1 static IRAM_ATTR bool sync_callback(gptimer_handle_t timer, const
gptimer_alarm_event_data_t *edata, void *user_ctx)↪→

2 {
3 BaseType_t high_task_awoken = pdFALSE;
4

5 if (edata->alarm_value == time_sync)
6 #if SYNC_USE_NOTIF_NOT_SEM
7 vTaskNotifyGiveIndexedFromISR(execute_task, notif_idx,

&high_task_awoken);↪→

8 #else
9 xSemaphoreGiveFromISR(sync_semaphore, &high_task_awoken);

10 #endif
11

12 return high_task_awoken == pdTRUE;
13 }

Listing A.55: Funkcja sync_callback uruchamiana jako przerwanie przez timer

Następnie stworzone zostały pomocnicze makra, wymuszające synchronizację jeśli na nią
czekamy, oraz wyłączające synchronizację.

1 #if SYNC_USE_NOTIF_NOT_SEM
2

146

Dodatek A. Dokumentacja techniczna

3 #define WAIT_FOR_SYNC \
4 do \
5 { \
6 if (wait_for_sync) \
7 while (ulTaskNotifyTakeIndexed(notif_idx, pdTRUE,

portMAX_DELAY) != pdTRUE) \↪→

8 ; \
9 } while (0)

10

11 #define CLEAR_SYNC ulTaskNotifyTakeIndexed(notif_idx, pdTRUE, 0)
12

13 #else
14

15 #define WAIT_FOR_SYNC \
16 do \
17 { \
18 if (wait_for_sync) \
19 while (xSemaphoreTake(sync_semaphore, portMAX_DELAY) != pdTRUE)

\↪→

20 ; \
21 } while (0)
22

23 #define CLEAR_SYNC xSemaphoreTake(sync_semaphore, 0)
24

25 #endif

Listing A.56: Makra pomocnicze do synchronizacji wykonywania zadania

Funkcje interfejsu (frontend)

Teraz przedstawione zostaną funkcje stanowiące interfejs.
Funkcja inicjalizuje wszystkie podzespoły i inne elementy. Ustawia piny wejść i wyjść
cyfrowych, tworzy transakcje do przetworników, inicjalizuje przetworniki, inicjalizuje eks-
pandery, czyści porty. Przygotowuje i włącza timer, uruchamia wątek interpretera. Istnieje
również jej przeciwieństwo – funkcja deinit która zatrzymuje interpreter, wyłącza timer,
deinicjalizuje wszystkie podzespoły.

1 esp_err_t init()
2 {

147

Dawid Najda

3 ESP_LOGI(TAG, "Initing Board...");
4

5 // GPIO
6 for (size_t i = 0; i < dg_in_num; ++i)
7 {
8 gpio_set_direction(dig_in[i], GPIO_MODE_INPUT);
9 gpio_pulldown_en(dig_in[i]);

10 }
11

12 for (size_t i = 0; i < dg_out_num; ++i)
13 gpio_set_direction(dig_out[i], GPIO_MODE_OUTPUT);
14

15 // ADC/DAC
16 for (size_t i = 0; i < an_in_num; ++i)
17 trx_in[i] = MCP3204::make_trx(i);
18

19 for (size_t i = 0; i < an_out_num; ++i)
20 trx_out[i] = MCP4922::make_trx(an_out_num - i - 1); // reversed,

because rotated chip↪→

21

22 ESP_RETURN_ON_ERROR(
23 adc.init(),
24 TAG, "Error in adc.init!");
25

26 ESP_RETURN_ON_ERROR(
27 dac.init(),
28 TAG, "Error in dac.init!");
29

30 ESP_RETURN_ON_ERROR(
31 adc.acquire_spi(),
32 TAG, "Error in adc.acquire_spi!");
33

34 ESP_RETURN_ON_ERROR(
35 dac.acquire_spi(),
36 TAG, "Error in dac.acquire_spi!");
37

38 // EXPANDER
39 ESP_RETURN_ON_ERROR(
40 expander_a.init(true),
41 TAG, "Error in expander_a.init!");

148

Dodatek A. Dokumentacja techniczna

42

43 ESP_RETURN_ON_ERROR(
44 expander_b.init(true),
45 TAG, "Error in expander_b.init!");
46

47 // CLEANUP BOARD
48 ESP_RETURN_ON_ERROR(
49 port_cleanup(),
50 TAG, "Error in port_cleanup!");
51

52 // TIMER
53 #if SYNC_USE_NOTIF_NOT_SEM
54 #else
55 ESP_RETURN_ON_FALSE(
56 (sync_semaphore = xSemaphoreCreateBinary()),
57 ESP_ERR_NO_MEM, TAG, "Error in xSemaphoreCreateBinary!");
58 #endif
59

60 constexpr gptimer_config_t timer_config = {
61 .clk_src = GPTIMER_CLK_SRC_DEFAULT,
62 .direction = GPTIMER_COUNT_UP,
63 .resolution_hz = 1 * 1000 * 1000, // 1MHz, 1 tick = 1us
64 .flags = {
65 .intr_shared = false,
66 },
67 };
68

69 sync_alarm_cfg.reload_count = 0;
70 sync_alarm_cfg.alarm_count = 0;
71 sync_alarm_cfg.flags.auto_reload_on_alarm = false;
72

73 constexpr gptimer_event_callbacks_t evt_cb_cfg = {
74 .on_alarm = sync_callback,
75 };
76

77 ESP_RETURN_ON_ERROR(
78 gptimer_new_timer(&timer_config, &sync_timer),
79 TAG, "Error in gptimer_new_timer!");
80

81 ESP_RETURN_ON_ERROR(

149

Dawid Najda

82 gptimer_set_alarm_action(sync_timer, &sync_alarm_cfg),
83 TAG, "Error in gptimer_set_alarm_action!");
84

85 ESP_RETURN_ON_ERROR(
86 gptimer_register_event_callbacks(sync_timer, &evt_cb_cfg,

nullptr),↪→

87 TAG, "Error in gptimer_register_event_callbacks!");
88

89 ESP_RETURN_ON_ERROR(
90 gptimer_enable(sync_timer),
91 TAG, "Error in gptimer_enable!");
92

93 // SPAWN EXE TASK
94 ESP_RETURN_ON_FALSE(
95 xTaskCreatePinnedToCore(execute, "BoardTask", BOARD_MEM, nullptr,

BOARD_PRT, &execute_task, CPU1),↪→

96 ESP_ERR_NO_MEM, TAG, "Error in xTaskCreatePinnedToCore!");
97

98 ESP_LOGI(TAG, "Done!");
99 return ESP_OK;

100 }

Listing A.57: Funkcja init ustawiająca wszystkie podzespoły po otrzymaniu zasilania

Funkcja przyjmuje program i generatory i zapisuje je poprzez przeniesienie (niszczy ory-
ginał).

1 esp_err_t move_config(Interpreter::Program &p, std::vector<Generator> &g)
2 {
3 if (!data_mutex.try_lock())
4 return ESP_ERR_INVALID_STATE;
5

6 program = std::move(p);
7 generators = std::move(g);
8

9 data_mutex.unlock();
10 return ESP_OK;
11 }

150

Dodatek A. Dokumentacja techniczna

Listing A.58: Funkcja move_config zapisująca program i generatory

Funkcja pozwala dać semafor synchronizujący z zewnątrz. Używana jest przez
Communicator w celu przerwania oczekiwania, jeśli użytkownik się rozłączył w trakcie
wykonywania programu.

1 esp_err_t give_sem_emergency()
2 {
3 #if SYNC_USE_NOTIF_NOT_SEM
4 if (xTaskNotifyGiveIndexed(execute_task, notif_idx) != pdTRUE)
5 #else
6 if (xSemaphoreGive(sync_semaphore) != pdTRUE)
7 #endif
8 return ESP_FAIL;
9 return ESP_OK;

10 }

Listing A.59: Funkcja give_sem_emergency dająca semafor z zewnątrz

Funkcja – wątek interpretera

Ostatnią, najważniejszą funkcją jest ta stanowiąca główny kod interpretera. Jest ona uru-
chamiana jako osobne zadanie na własnym, całkowicie przydzielonym rdzeniu. Wykorzy-
stuje większość wyżej opisanych funkcji, i praktycznie cały kod jaki istnieje w programie
(poza samym serwerem HTTP).
Na początku czeka w pętli aż dostanie zezwolenie na start od wątku serwera. Przygotowuje
wszystko, tzn. zamyka dostęp do zmiennych, czyści porty, sprawdza program. Następnie
uruchamia timer i zaczyna interpretację programu. W pętli pobierana jest nowa instruk-
cja, odczytywany jest port i następuje wykonanie operacji. DELAY dodaje opóźnienie do
wcześniejszego końca timera, sprawdza czy już nie minął, i kontynuuje. GETTM pobiera
obecny rzeczywisty czas, jeśli jest późniejszy niż oczekiwana synchronizacja to ją nad-
pisuje. Reszta operacji oczekuje na synchronizację, po czym po prostu wykonuje jedną
(lub kilka) z wcześniej opisanych funkcji. Po wykonaniu synchronizowanej operacji, syn-
chronizacja jest wyłączana – kolejne operacje wykonają się tak szybko jak to możliwe.
Tylko DELAY i GETTM mogą włączać ją ponownie, jeśli oczekiwany czas jeszcze nie minął.
Jeśli gdzieś wystąpił błąd – np. funkcja nie wykonała się poprawnie, nie ma miejsca w
buforze lub serwer zasygnalizował rozłączenie użytkownika – interpreter kończy pracę. Po
skończeniu zadania, zatrzymywany jest timer, resetowane są porty i wątek oczekuje na
ponowne uruchomienie.

151

Dawid Najda

1 static void interpreter_task(void *arg)
2 {
3 __attribute__((unused)) esp_err_t ret; // used in on_false macros
4

5 Input in;
6 Output out;
7

8 ESP_LOGI(TAG, "Starting the Board executor...");
9 while (true)

10 {
11 ESP_LOGI(TAG, "Waiting for task...");
12 while (!Communicator::is_running())
13 vTaskDelay(1);
14

15 ESP_LOGI(TAG, "Dispatched...");
16

17 // lock access
18 std::lock_guard<std::mutex> lock(data_mutex);
19

20 // prepare hardware
21 ESP_GOTO_ON_ERROR(
22 port_cleanup(),
23 label_fail, TAG, "Failed to port_cleanup!");
24

25 // prepare software
26 ESP_GOTO_ON_FALSE(
27 program.isValid(),
28 ESP_ERR_INVALID_STATE, label_fail, TAG, "Program is

invalid!");↪→

29

30 program.reset();
31

32 // letsgooo
33 time_now = 0;
34 time_sync = -1;
35 wait_for_sync = false;
36

37 ESP_GOTO_ON_ERROR(
38 gptimer_set_raw_count(sync_timer, time_now),

152

Dodatek A. Dokumentacja techniczna

39 label_fail, TAG, "Failed to gptimer_set_raw_count!");
40

41 ESP_GOTO_ON_ERROR(
42 gptimer_set_alarm_action(sync_timer, &sync_alarm_cfg),
43 label_fail, TAG, "Failed to gptimer_set_alarm_action!");
44

45 ESP_GOTO_ON_ERROR(
46 gptimer_start(sync_timer),
47 label_fail, TAG, "Failed to gptimer_start!");
48

49 time_sync = 0;
50

51 while (true)
52 {
53 bool comm_ok = true;
54

55 Interpreter::InstrPtr stmt = program.getInstr();
56

57 if (stmt == Interpreter::nullinstr) [[unlikely]]
58 break;
59

60 in = static_cast<Input>(stmt->port);
61 out = static_cast<Output>(stmt->port);
62

63 switch (stmt->opc)
64 {
65 case OPCode::DELAY:
66 time_sync += stmt->arg.u;
67 wait_for_sync = true;
68 CLEAR_SYNC;
69 ESP_GOTO_ON_ERROR(
70 gptimer_set_alarm_action(sync_timer,

&sync_alarm_cfg),↪→

71 label_fail, TAG, "Failed to gptimer_set_alarm_action
in OPCode::DELAY!");↪→

72 continue;
73

74 case OPCode::GETTM:
75 time_sync = std::max(time_sync, get_now());
76 wait_for_sync = true;

153

Dawid Najda

77 CLEAR_SYNC;
78 ESP_GOTO_ON_ERROR(
79 gptimer_set_alarm_action(sync_timer,

&sync_alarm_cfg),↪→

80 label_fail, TAG, "Failed to gptimer_set_alarm_action
in OPCode::GETTM!");↪→

81 continue;
82

83 case OPCode::RSTTM:
84 WAIT_FOR_SYNC;
85 time_sync = -1;
86 wait_for_sync = false;
87 time_now = 0;
88 CLEAR_SYNC;
89 ESP_GOTO_ON_ERROR(
90 gptimer_set_alarm_action(sync_timer,

&sync_alarm_cfg),↪→

91 label_fail, TAG, "Failed to gptimer_set_alarm_action
in OPCode::RSTTM!");↪→

92 time_sync = 0;
93 ESP_GOTO_ON_ERROR(
94 gptimer_set_raw_count(sync_timer, time_now),
95 label_fail, TAG, "Failed to gptimer_set_raw_count in

OPCode::RSTTM!");↪→

96 continue;
97

98 case OPCode::DIRD:
99 {

100 WAIT_FOR_SYNC;
101 uint32_t val;
102 digital_inputs_read(val);
103 comm_ok = Communicator::write_data(get_now(), val);
104 break;
105 }
106

107 case OPCode::DOWR:
108 WAIT_FOR_SYNC;
109 digital_outputs_wr(stmt->arg.u);
110 break;
111 case OPCode::DOSET:

154

Dodatek A. Dokumentacja techniczna

112 WAIT_FOR_SYNC;
113 digital_outputs_set(stmt->arg.u);
114 break;
115 case OPCode::DORST:
116 WAIT_FOR_SYNC;
117 digital_outputs_rst(stmt->arg.u);
118 break;
119 case OPCode::DOAND:
120 WAIT_FOR_SYNC;
121 digital_outputs_and(stmt->arg.u);
122 break;
123 case OPCode::DOXOR:
124 WAIT_FOR_SYNC;
125 digital_outputs_xor(stmt->arg.u);
126 break;
127

128 case OPCode::AIRDF:
129 {
130 WAIT_FOR_SYNC;
131 int32_t sum = 0;
132 MCP3204::out_t rd;
133 for (size_t r = stmt->arg.u; r; --r)
134 {
135 ESP_GOTO_ON_ERROR(
136 analog_input_read(in, rd),
137 label_fail, TAG, "Failed to analog_input_read in

OPCode::AIRDF!");↪→

138 sum += adc_offset(rd);
139 }
140 float val = bin_to_phy<float>(in, sum, stmt->arg.u);
141 comm_ok = Communicator::write_data(get_now(), val);
142 break;
143 }
144 case OPCode::AIRDM:
145 {
146 WAIT_FOR_SYNC;
147 int32_t sum = 0;
148 MCP3204::out_t rd;
149 for (size_t r = stmt->arg.u; r; --r)
150 {

155

Dawid Najda

151 ESP_GOTO_ON_ERROR(
152 analog_input_read(in, rd),
153 label_fail, TAG, "Failed to analog_input_read in

OPCode::AIRDF!");↪→

154 sum += adc_offset(rd);
155 }
156 int32_t val = bin_to_phy<int32_t, 1'000>(in, sum,

stmt->arg.u);↪→

157 comm_ok = Communicator::write_data(get_now(), val);
158 break;
159 }
160 case OPCode::AIRDU:
161 {
162 WAIT_FOR_SYNC;
163 int32_t sum = 0;
164 MCP3204::out_t rd;
165 for (size_t r = stmt->arg.u; r; --r)
166 {
167 ESP_GOTO_ON_ERROR(
168 analog_input_read(in, rd),
169 label_fail, TAG, "Failed to analog_input_read in

OPCode::AIRDF!");↪→

170 sum += adc_offset(rd);
171 }
172 int32_t val = bin_to_phy<int32_t, 1'000'000>(in, sum,

stmt->arg.u);↪→

173 comm_ok = Communicator::write_data(get_now(), val);
174 break;
175 }
176

177 case OPCode::AOVAL:
178 {
179 MCP4922::in_t outval = phy_to_dac(out, stmt->arg.f);
180 WAIT_FOR_SYNC;
181 ESP_GOTO_ON_ERROR(
182 analog_output_write(out, outval),
183 label_fail, TAG, "Failed to analog_output_write in

OPCode::AOVAL!");↪→

184 break;
185 }

156

Dodatek A. Dokumentacja techniczna

186 case OPCode::AOGEN:
187 {
188 MCP4922::in_t outval = phy_to_dac(out, (stmt->arg.u <

generators.size()) ?
generators[stmt->arg.u].get(time_sync) : 0);

↪→

↪→

189 WAIT_FOR_SYNC;
190 ESP_GOTO_ON_ERROR(
191 analog_output_write(out, outval),
192 label_fail, TAG, "Failed to analog_output_write in

OPCode::AOGEN!");↪→

193 break;
194 }
195

196 case OPCode::AIEN:
197 WAIT_FOR_SYNC;
198 ESP_GOTO_ON_ERROR(
199 analog_inputs_enable(),
200 label_fail, TAG, "Failed to analog_inputs_enable in

OPCode::AOVAL!");↪→

201 break;
202 case OPCode::AIDIS:
203 WAIT_FOR_SYNC;
204 ESP_GOTO_ON_ERROR(
205 analog_inputs_disable(),
206 label_fail, TAG, "Failed to analog_inputs_disable in

OPCode::AIDIS!");↪→

207 break;
208 case OPCode::AIRNG:
209 WAIT_FOR_SYNC;
210 ESP_GOTO_ON_ERROR(
211 analog_input_range(in,

static_cast<AnIn_Range>(stmt->arg.u)),↪→

212 label_fail, TAG, "Failed to analog_input_range in
OPCode::AIRNG!");↪→

213 break;
214

215 case OPCode::NOP:
216 ESP_GOTO_ON_FALSE(
217 false, ESP_FAIL,
218 label_fail, TAG, "Failed in OPCode::NOP!");

157

Dawid Najda

219 break;
220 case OPCode::INV:
221 ESP_GOTO_ON_FALSE(
222 false, ESP_FAIL,
223 label_fail, TAG, "Failed in OPCode::INV!");
224 break;
225 }
226

227 wait_for_sync = false;
228

229 ESP_GOTO_ON_FALSE(
230 comm_ok,
231 ESP_ERR_NO_MEM, label_fail, TAG, "Communicator fail - no

buffer space!");↪→

232

233 if (Communicator::should_exit()) [[unlikely]]
234 {
235 ESP_LOGW(TAG, "Communicator requests to exit!");
236 goto label_fail;
237 }
238 }
239

240 WAIT_FOR_SYNC;
241

242 label_fail:
243 gptimer_stop(sync_timer);
244

245 port_cleanup();
246

247 ESP_LOGI(TAG, "Execution took %" PRIu64 "us", get_now());
248 ESP_LOGI(TAG, "Exiting...");
249 Communicator::confirm_exit();
250 }
251 // never ends
252 }

Listing A.60: Funkcja interpreter_task będąca zadaniem/wątkiem interpretera

158

Dodatek A. Dokumentacja techniczna

A.4 Programy służące do pomiarów

Tutaj przedstawione są dłuższe kody źródłowe programów wykorzystywanych do ekspe-
rymentów.

A.4.1 Wyznaczanie charakterystyki częstotliwościowej wejścia

Program ten służy do wykonania pomiarów i wyznaczenia odpowiedzi częstotliwościowej
wejścia napięciowego na podstawie sygnałów sinusoidalnych.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 import scipy.optimize as opt
4

5 from IOBlock import IOBlock
6

7

8 def parse_file(fname):
9 times = []

10 vals = []
11 for tpl in IOBlock.read_file_iter(fname, "<fI"):
12 times.append(tpl[1] / 1000000)
13 vals.append(tpl[0])
14 return [np.array(vals), np.array(times)]
15

16

17 iob = IOBlock()
18

19 task = """
20 AIRNG 1 MIN;
21 AIEN;
22 DELAY 100000;
23 RSTTM;
24 LOOP {iter};
25 AOGEN 1 0;
26 AIRDF 1 1;
27 DELAY 50;
28 END;
29 """
30

31

159

Dawid Najda

32 frqs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000,
5000, 6000, 7000, 8000, 9000]

↪→

↪→

33

34 fs = 1000000 / 50 # 1/(50us) = 20kHz
35 periods = 10
36

37 for ft in frqs:
38 T = np.floor(1000000 / ft)
39 ttltime = min(2, periods * T / 1000000)
40 iter = int(ttltime * fs)
41

42 generators = [[{"A": 3, "S": {"WF": "Sine", "T": T}}]]
43 ret = iob.settings(task=task.format(iter=iter),

generators=generators)↪→

44 print(ret)
45 if ret["status"] != "ok":
46 exit()
47

48 iob.write_file("input/datas/" + str(ft) + ".bin", 4)
49

50 exit()
51

52 Gs = np.full_like(frqs, 0, dtype=float)
53

54 for idx, ft in enumerate(frqs):
55 vo, t = parse_file("input/datas/" + str(ft) + ".bin")
56

57 t = np.array_split(t, 2)[1]
58 vo = np.array_split(vo, 2)[1]
59

60 rmsi = 3.1 / np.sqrt(2)
61 rmso = np.sqrt(np.mean(vo**2))
62

63 Gs[idx] = rmso / rmsi
64

65 print(Gs)
66

67 Gs = 20 * np.log10(Gs)
68

160

Dodatek A. Dokumentacja techniczna

69 print(Gs)
70

71

72 # Define the low-pass filter function with insertion loss
73 def lowpass(f, fL):
74 return 20 * np.log10(1 / np.sqrt(1 + (f / fL) ** 2))
75

76

77 # Initial guesses for RC and L
78 initial_guess = (1e3)
79 mins = (1)
80 maxs = (np.inf)
81

82 # Curve fitting
83 params, params_covariance = opt.curve_fit(
84 lowpass,
85 frqs,
86 Gs,
87 p0=initial_guess,
88 bounds=(mins, maxs),
89)
90 # Fitted RC and L values
91 fLf = params
92

93 print("Fitted fc1:", fLf)
94

95 frqs_fitted = np.logspace(0, 5, 1000, endpoint=False)
96 fitted_curve = lowpass(frqs_fitted, fLf)
97

98 plt.figure()
99

100 plt.title("Odpowiedź częstotliwościowa")
101 plt.plot(frqs, Gs, "o", label="Pomiar")
102 plt.plot(frqs_fitted, fitted_curve, "--", label="Dopasowanie")
103 plt.xlabel("f [Hz]")
104 plt.ylabel("G [dB]")
105 plt.xscale("log")
106 plt.legend()
107 plt.grid()
108

161

Dawid Najda

109 plt.tight_layout()
110 plt.show()

Listing A.61: Program do wyznaczenia odpowiedzi częstotliwościowej wejścia.

A.4.2 Wyznaczanie charakterystyki wejściowej tranzystora

Program ten służy do wykonania i zapisania pomiarów z urządzenia oraz wygenerowania
wykresu charakterystyki wejściowej tranzystora.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from autoscale import *
4 import os
5

6 from IOBlock import IOBlock
7

8

9 def parse_file(fname):
10 vals = []
11 for tpl in IOBlock.read_file_iter(fname, "<f"):
12 vals.append(tpl[0])
13 return np.array(vals)
14

15

16 task = """
17 AIRNG 1 MIN;
18 AIRNG 4 MAX;
19 AIEN;
20 AOVAL 1 {Uce};
21 DELAY 100000;
22 RSTTM;
23 LOOP 1000;
24 AOGEN 2 0;
25 AIRDF 1 50;
26 DELAY 1000;
27 END;
28 """
29

162

Dodatek A. Dokumentacja techniczna

30 generators = [[{"A": 0.1, "S": {"WF": "Triangle", "T": 2000000, "P":
1000000}}]]↪→

31

32 # =========
33 iob = IOBlock()
34 Uce = "1"
35 ret = iob.settings(task=task.format(Uce=Uce), generators=generators)
36 print(ret)
37 if ret["status"] != "ok":
38 exit()
39 iob.write_file("tran/datas/ibub/inc/" + Uce + ".bin")
40 exit()
41

42 ibs = np.linspace(0, 1, num=1000, endpoint=False)
43

44 # Plot the magnitude and phase of the frequency response
45 plt.figure()
46 plt.suptitle("Charakterystyka Ube(Ib) dla różnych Uce [V]")
47

48 plt.subplot(1, 2, 1)
49 for entry in sorted(
50 os.scandir("tran/datas/ibub/inc/"), key=lambda e:

float(e.name.rsplit(".", 1)[0])↪→

51):
52 vo = parse_file(entry.path)
53 plt.plot(ibs, vo, label="Uce=" + entry.name.rsplit(".", 1)[0])
54

55 plt.xlabel("Ib [mA]")
56 plt.ylabel("Ube [V]")
57 plt.grid()
58 plt.legend()
59

60 plt.subplot(1, 2, 2)
61 for entry in sorted(
62 os.scandir("tran/datas/ibub/dec/"), key=lambda e:

float(e.name.rsplit(".", 1)[0])↪→

63):
64 vo = parse_file(entry.path)
65 plt.plot(ibs, vo, label="Uce=" + entry.name.rsplit(".", 1)[0])
66

163

Dawid Najda

67 plt.xlabel("Ib [mA]")
68 plt.ylabel("Ube [V]")
69 plt.grid()
70 plt.legend()
71

72 plt.tight_layout()
73 plt.show()

Listing A.62: Program do wygenerowania charakterystyki wejściowej tranzystora

A.4.3 Wyznaczanie charakterystyki przejściowej tranzystora

Program ten służy do wykonania i zapisania pomiarów z urządzenia oraz wygenerowania
wykresu charakterystyki przejściowej tranzystora.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from autoscale import *
4 import os
5

6 from IOBlock import IOBlock
7

8

9 def parse_file(fname):
10 vals = []
11 for tpl in IOBlock.read_file_iter(fname, "<f"):
12 vals.append(tpl[0])
13 return np.array(vals)
14

15

16 task = """
17 AIRNG 1 MIN;
18 AIRNG 4 MAX;
19 AIEN;
20 AOVAL 1 {Uce};
21 DELAY 100000;
22 RSTTM;
23 LOOP 1000;
24 AOGEN 2 0;

164

Dodatek A. Dokumentacja techniczna

25 AIRDF 4 50;
26 DELAY 1000;
27 END;
28 """
29

30 generators = [[{"A": 0.1, "S": {"WF": "Triangle", "T": 2000000, "P":
1000000}}]]↪→

31

32 # =========
33 iob = IOBlock()
34 Uce = "0.5"
35 ret = iob.settings(task=task.format(Uce=Uce), generators=generators)
36 print(ret)
37 if ret["status"] != "ok":
38 exit()
39 iob.write_file("tran/datas/ibic/" + Uce + ".bin")
40 exit()
41

42 ibs = np.linspace(0, 1, num=1000, endpoint=False)
43

44 # Plot the magnitude and phase of the frequency response
45 plt.figure()
46 plt.suptitle("Charakterystyka Ic(Ib) dla różnych Uce [V]")
47

48 for entry in sorted(
49 os.scandir("tran/datas/ibic/"), key=lambda e:

float(e.name.rsplit(".", 1)[0])↪→

50):
51 vo = parse_file(entry.path)
52 plt.plot(ibs, vo, label="Uce=" + entry.name.rsplit(".", 1)[0])
53

54 plt.xlabel("Ib [mA]")
55 plt.ylabel("Ic [A]")
56 plt.grid()
57 plt.legend()
58

59 plt.tight_layout()
60 plt.show()

165

Dawid Najda

Listing A.63: Program do wygenerowania charakterystyki przejściowej tranzystora

A.4.4 Wyznaczanie charakterystyki wyjściowej tranzystora

Program ten służy do wykonania i zapisania pomiarów z urządzenia oraz wygenerowania
wykresu charakterystyki wyjściowej tranzystora.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from autoscale import *
4 import os
5

6 from IOBlock import IOBlock
7

8

9 def parse_file(fname):
10 vals = []
11 for tpl in IOBlock.read_file_iter(fname, "<f"):
12 vals.append(tpl[0])
13 return np.array(vals)
14

15

16 task = """
17 AIRNG 1 MIN;
18 AIRNG 4 MAX;
19 AIEN;
20 AOVAL 2 {Ib};
21 DELAY 100000;
22 RSTTM;
23 LOOP 1000;
24 AOGEN 1 0;
25 AIRDF 4 50;
26 DELAY 1000;
27 END;
28 """
29

30 generators = [[{"A": 10, "S": {"WF": "Triangle", "T": 2000000, "P":
1000000}}]]↪→

31

32 # =========

166

Dodatek A. Dokumentacja techniczna

33 iob = IOBlock()
34 Ib = "0.05"
35 ret = iob.settings(task=task.format(Ib=Ib), generators=generators)
36 print(ret)
37 if ret["status"] != "ok":
38 exit()
39 iob.write_file("tran/datas/uceic/" + Ib + ".bin")
40 exit()
41

42 ucs = np.linspace(0, 10, num=1000, endpoint=False)
43

44 # Plot the magnitude and phase of the frequency response
45 plt.figure()
46 plt.suptitle("Charakterystyka Ic(Uce) dla różnych Ib [mA]")
47

48 for entry in sorted(
49 os.scandir("tran/datas/uceic/"), key=lambda e:

float(e.name.rsplit(".", 1)[0])↪→

50):
51 vo = parse_file(entry.path)
52 plt.plot(ucs, vo, label="Ib=" + str(float(entry.name.rsplit(".",

1)[0]) * 10))↪→

53

54 plt.xlabel("Uce [V]")
55 plt.ylabel("Ic [A]")
56 plt.grid()
57 plt.legend()
58

59 plt.show()

Listing A.64: Program do wygenerowania charakterystyki wyjściowej tranzystora

A.4.5 Wyznaczanie odpowiedzi częstotliwościowej świergotem

Program ten służy do wykonania pomiarów i wyznaczenia odpowiedzi częstotliwościowej
filtra na podstawie sygnału świergotowego.

1 import matplotlib.pyplot as plt
2 import numpy as np

167

Dawid Najda

3 from scipy.fftpack import fft
4 import scipy.optimize as opt
5 from autoscale import *
6

7 from IOBlock import IOBlock
8

9

10 def parse_file(fname, format):
11 times = []
12 vals = []
13 for tpl in IOBlock.read_file_iter(fname, format):
14 times.append(tpl[1] / 1000000)
15 vals.append(tpl[0])
16 return [np.array(vals), np.array(times)]
17

18

19 iob = IOBlock()
20

21 task = """
22 AIRNG 1 MIN;
23 AIEN;
24 DELAY 100000;
25 RSTTM;
26 LOOP 2000000;
27 AOGEN 1 0;
28 AIRDF 1 1;
29 DELAY 50;
30 END;
31 """
32

33 generators = [
34 [
35 {
36 "A": 3,
37 "S": {"WF": "ChirpLog", "T": 100000000, "FS": 1 * 1e-6, "FR":

10000},↪→

38 }
39]
40]
41

168

Dodatek A. Dokumentacja techniczna

42 ret = iob.settings(task=task, generators=generators)
43 print(ret)
44 if ret["status"] != "ok":
45 exit()
46

47 # iob.write_file("filt/dataswv/chirplog/in.bin", 4)
48 # iob.write_file("filt/dataswv/chirplog/out.bin", 4)
49 exit()
50

51 vi, t = parse_file("filt/dataswv/chirplog/in.bin", "<fI")
52 vo, _ = parse_file("filt/dataswv/chirplog/out.bin", "<fI")
53

54 N = len(t)
55 fs = 20000 # (N) / (t[-1] - t[1])
56

57 print("Fs:", fs)
58

59 plt.figure()
60 plt.plot(t, vi, label="Input")
61 plt.plot(t, vo, label="Output")
62 plt.title("Przebieg sygnałów")
63 plt.xlabel("f [Hz]")
64 plt.ylabel("U [V]")
65 plt.show()
66

67 # Compute FFT of input and output signals
68 input_fft = fft(vi)
69 output_fft = fft(vo)
70

71 # Frequency axis
72 freqs = np.fft.fftfreq(N, 1 / fs)
73

74 # Calculate frequency response
75 frequency_response = output_fft / input_fft
76

77 frqs = freqs[: N // 2]
78 dbs = 20 * np.log10(np.abs(frequency_response)[: N // 2])
79 phs = np.angle(frequency_response, deg=True)[: N // 2]
80

81

169

Dawid Najda

82 # Define the low-pass filter function with insertion loss
83 def bandpass(f, fL, fH, L):
84 return (
85 -L
86 + 20 * np.log10(1 / np.sqrt(1 + (f / fL) ** 2))
87 + 20 * np.log10((f / fH) / np.sqrt(1 + (f / fH) ** 2))
88)
89

90

91 # Initial guesses for RC and L
92 initial_guess = (1e1, 1e3, -10)
93 mins = (1, 1, -np.inf)
94 maxs = (np.inf, np.inf, 0)
95

96 fftkeys = np.nonzero((frqs >= 1) & (frqs <= 1000))
97 fftfrs = frqs[fftkeys]
98 fftdbs = dbs[fftkeys]
99

100 # Curve fitting
101 params, params_covariance = opt.curve_fit(
102 bandpass,
103 fftfrs,
104 fftdbs,
105 p0=initial_guess,
106 bounds=(mins, maxs),
107 sigma=np.log10(fftfrs + 1),
108)
109 # Fitted RC and L values
110 fLf, fHf, Lf = params
111

112 print("Fitted fc1:", fLf)
113 print("Fitted fc2:", fHf)
114 print("Fitted insertion loss (dB):", Lf)
115

116 fitted_curve = bandpass(frqs, fLf, fHf, Lf)
117

118 # Plot the magnitude and phase of the frequency response
119 plt.figure()
120

121 plt.subplot(2, 1, 1)

170

Dodatek A. Dokumentacja techniczna

122 plt.title("Odpowiedź częstotliwościowa")
123 plt.plot(frqs, dbs)
124 plt.plot(frqs, fitted_curve)
125 plt.xlabel("f [Hz]")
126 plt.ylabel("G [dB]")
127 plt.xscale("log")
128 plt.xlim(1, 5000)
129 autoscale()
130 plt.grid()
131

132 plt.subplot(2, 1, 2)
133 plt.plot(frqs, phs)
134 plt.xlabel("f [Hz]")
135 plt.ylabel("φ [°]")
136 plt.xscale("log")
137 plt.xlim(1, 5000)
138 autoscale()
139 plt.gca().set_yticks(np.arange(-90, 90 + 1, 45))
140 plt.grid()
141

142 plt.tight_layout()
143 plt.show()

Listing A.65: Program do wyznaczenia odpowiedzi częstotliwościowej filtra. Sposób 1.

A.4.6 Wyznaczanie odpowiedzi częstotliwościowej sinusoidami

Program ten służy do wykonania pomiarów i wyznaczenia odpowiedzi częstotliwościowej
filtra na podstawie odpowiedzi na sygnały sinusoidalne.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.fftpack import fft
4 import scipy.optimize as opt
5 import os
6 from autoscale import *
7

8 from IOBlock import IOBlock
9

171

Dawid Najda

10

11 def parse_file(fname):
12 times = []
13 vals = []
14 for tpl in IOBlock.read_file_iter(fname, "<fI"):
15 times.append(tpl[1] / 1000000)
16 vals.append(tpl[0])
17 return [np.array(vals), np.array(times)]
18

19

20 iob = IOBlock()
21

22 task = """
23 AIRNG 1 MIN;
24 AIEN;
25 DELAY 100000;
26 RSTTM;
27 LOOP {iter};
28 AOGEN 1 0;
29 AIRDF 1 1;
30 DELAY 50;
31 END;
32 """
33

34

35 frqs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000,
5000, 6000]

↪→

↪→

36

37 fs = 1000000 / 50 # 1/(50us) = 20kHz
38 periods = 10
39

40 for ft in frqs:
41 T = np.floor(1000000 / ft)
42 ttltime = min(2, periods * T / 1000000)
43 iter = int(ttltime * fs)
44

45 generators = [[{"A": 3, "S": {"WF": "Sine", "T": T}}]]
46 ret = iob.settings(task=task.format(iter=iter),

generators=generators)↪→

172

Dodatek A. Dokumentacja techniczna

47 print(ret)
48 if ret["status"] != "ok":
49 exit()
50

51 # iob.write_file("filt/datassine/in/" + str(ft) + ".bin", 4)
52 # iob.write_file("filt/datassine/out/" + str(ft) + ".bin", 4)
53

54 exit()
55

56 Gs = np.full_like(frqs, 0, dtype=float)
57 Ps = np.full_like(frqs, 0, dtype=float)
58

59 for idx, ft in enumerate(frqs):
60 vi, t = parse_file("filt/datassine/in/" + str(ft) + ".bin")
61 vo, _ = parse_file("filt/datassine/out/" + str(ft) + ".bin")
62

63 t = np.array_split(t, 2)[1]
64 vi = np.array_split(vi, 2)[1]
65 vo = np.array_split(vo, 2)[1]
66

67 vi -= np.mean(vi)
68 vo -= np.mean(vo)
69

70 rmsi = np.sqrt(np.mean(vi**2))
71 rmso = np.sqrt(np.mean(vo**2))
72

73 Gs[idx] = rmso / rmsi
74

75 correlation = np.correlate(vi, vo, mode="full")
76 lag = np.argmax(correlation) - (len(vi) - 1)
77

78 phsh = ((lag / fs * ft) % 1) * 360
79 if phsh > 180:
80 phsh -= 360
81

82 Ps[idx] = phsh
83

84

85 print(Gs)
86 print(Ps)

173

Dawid Najda

87

88 plt.figure()
89

90 plt.subplot(2, 1, 1)
91 plt.title("Odpowiedź częstotliwościowa")
92 plt.plot(frqs, 20*np.log10(Gs))
93 # plt.plot(frqs, fitted_curve)
94 plt.xlabel("f [Hz]")
95 plt.ylabel("G [dB]")
96 plt.xscale("log")
97 # plt.yscale("log")
98 # plt.xlim(1, 5000)
99 # autoscale()

100 plt.grid()
101

102 plt.subplot(2, 1, 2)
103 plt.plot(frqs, Ps)
104 plt.xlabel("f [Hz]")
105 plt.ylabel("φ [°]")
106 plt.xscale("log")
107 # plt.xlim(1, 5000)
108 # autoscale()
109 plt.gca().set_yticks(np.arange(-90, 90 + 1, 45))
110 plt.grid()
111

112 plt.tight_layout()
113 plt.show()

Listing A.66: Program do wyznaczenia odpowiedzi częstotliwościowej filtra. Sposób 2.

174

Dodatek B

Schemat ideowy całego bloku
wejść-wyjść analogowych i cyfrowych

Poniżej przedstawione są schematy ideowe całego bloku wejść-wyjść analogowych i cyfro-
wych. Pierwszy schemat zawiera mikrokontroler, sekcję zasilania oraz porty cyfrowe. Drugi
schemat zawiera wyjścia analogowe. Trzeci schemat przedstawia wejścia analogowe.

175

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 6/14/2024 Sheet of
File: Power_Digital.SchDoc Drawn By:

IN
1

2

OUT
3

GND

5V

U2

LM7805

3

2
1

8
4

U5A
MCP602-I/P

7
5

6

8
4

U5B
MCP602-I/P

+5aVCC

-VCC

IN
2

1

OUT
3

GND

U7

LM7905 _ YISS

-5

+5a

32

1

U8

LM4040C41ILPR

1

32
U9

LM4040C20ILPR

R1

R2

+5a

+4.096

+2.048

IN
1

2

OUT
3

GND

5V

U12

LM7805

+5l

IN
1

2

OUT
3

GND

5V

U13

LM7805

+5rVCC

3.3V
1

GND
2

D15
3

D2
4

D4
5

RX2
6

TX2
7

D5
8

D18
9

D19
10

D21
11

RX0
12

TX0
13

D22
14

D23
15

EN
16

VP
17

VN
18

D34
19

D35
20

D32
21

D33
22

D25
23

D26
24

D27
25

D14
26

D12
27

D13
28

GND
29

VIN
30

U6

ESP32-DOIT-DEVKIT V1 - 30 pin

+5l

DAC_MOSIDAC_CS

DAC_CLK

ADC_CS
ADC_CLK
ADC_MISO

ADC_MOSI

I2C_SDA

I2C_SCL

3

2
1

8
4

U16A
MCP602-I/P

7
5

6

8
4

U16B
MCP602-I/P

32

1

U17

LM4040C41ILPR
R17

-4.096

-2.048
R18

-5
-5

+5a
+5a

-5
-5

VCC

-VCC

1

2
3

J1

1

2
3

J2

1

32
U18

LM4040C20ILPR

+3.3

C1

C2 C4

C3

C5

D7

VCC

C6

C10 C11

+5a

-5

IN 1
1

IN 2
2

IN 3
3

IN 4
4

IN 5
5

IN 6
6

IN 7
7

GND
8

COM
9

OUT 7
10

OUT 6
11

OUT 5
12

OUT 4
13

OUT 3
14

OUT 2
15

OUT 1
16

U14

XD2003

1O
E

1
4O

E
13

1A
2

4A
12

1Y
3

4Y
11

V
C

C
14

3O
E

10
2O

E
4

3A
9

2A
5

3Y
8

2Y
6

G
N

D
7

U25

Texas Instruments SN74HC125N

+3.3

C18

5
6

4
3
2
1

P2

R53
R54
R55
R56

R57
R58
R59
R60

+3.3

R15R64R65R66

5
6

4
3
2
1

P1

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 6/14/2024 Sheet of
File: Analog_Output.SchDoc Drawn By:

SDI
5

VSS
12

CS
3

SCK
4

VDD
1

VOUTA
14

LDAC
8

SHDN
9

NC
2

NC
6

NC
7

VOUTB
10

VREFA
13

VREFB
11

U15

MCP4922-E/P+5a

+4.096

+5a

DAC_MOSI

DAC_CS
DAC_CLK

BNC5

BNC6

2

3

1

Q3
BD139

2

3

1

Q4
BD140

R30

R 47K

R27

R 47K

3
1

2
R29
5K Trim R31

R 100

VCC
VCC

-VCC
-VCC

VCC

VCC

VCC

-VCC

-VCC

-VCC

31

2

R33

20K Trim

R34

R 90K

2

3
1

11
4

U21A
6

5
7

11
4

U21B

3
1

2
R32
100K Trim

R35
R 10

R36
R 1k

2

3

1

Q5
BD139

2

3

1

Q6
BD140

R37

R 100

2

3

1

Q7
BD139

2

3

1

Q8
BD140

R38

R 100

VCC
VCCVCC

VCC VCC

-VCC
-VCC-VCC

-VCC -VCC
-VCC

VCC

R39
R 100k

R40

R 100k

R41

R 90k

R42

R 100k

R44
R 100k

R43

R 100k

R45

R 100k

R49

R 47K

R47

R 47K

3
1

2
R48
5K Trim

-2.048

-2.048

12

13
14

11
4

U21D
9

10
8

11
4

U21C

R50

R46

R 90k R51

2

3
1

11
4 U20A

6

5
7

11
4 U20B

12

13
14

11
4

U20D

9

10
8

11
4 U20C

3
1

2
R67
100K Trim

1

2

P3

Header

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSize

A3

Date: 6/14/2024 Sheet of
File: Analog_Input.SchDoc Drawn By:

CH2
3

CH3
4

DGND
7

CS/SHDN
8

CLK
11

VREF
13

DIN
9

CH0
1

CH1
2

DOUT
10

NC
5

NC
6

AGND
12

VDD
14

U1

MCP3204-BI/P

1B
1

2B
2

3B
3

4B
4

5B
5

6B
6

7B
7

8B
8

G
N

D
9

C
O

M
10

8C
11

7C
12

6C
13

5C
14

4C
15

3C
16

2C
17

1C
18

Q1
ULN2803A

SCL
1

SDA
2

A2
3

A1
4

A0
5

RESET
6

NC
7

INE
8

VSS
9

GP0
10

GP1
11

GP2
12

GP3
13

GP4
14

GP5
15

GP6
16

GP7
17

VDD
18

U3

MCP23008-E/P

+5r

+3.3

+5a

+4.096

(+)
2

(-)
6

8 14

K3

(+)
2

(-)
6

8 14

K2

(+)
2

(-)
6

8 14

K1+5r

+5r

+5r

R5

2

3
1

11
4

U10A
MCP6024-I/P

7
5

6

11
4

U10B
MCP6024-I/P

8
10

9

11
4

U10C
MCP6024-I/P

1B
1

2B
2

3B
3

4B
4

5B
5

6B
6

7B
7

8B
8

G
N

D
9

C
O

M
10

8C
11

7C
12

6C
13

5C
14

4C
15

3C
16

2C
17

1C
18

Q2
ULN2803A

SCL
1

SDA
2

A2
3

A1
4

A0
5

RESET
6

NC
7

INE
8

VSS
9

GP0
10

GP1
11

GP2
12

GP3
13

GP4
14

GP5
15

GP6
16

GP7
17

VDD
18

U4

MCP23008-E/P

+5r

+3.3

+5a+5a

+5a

+5a

1
2

3

4
11

U11A

5

6
7

4
11

U11B

8
9

10

4
11

U11C

+5a

+5a

+5a

-5

-5

-5
+4.096

+5a

+5a

(+)
2

(-)
6

8 14

K6

(+)
2

(-)
6

8 14

K5

(+)
2

(-)
6

8 14

K4+5r

+5r

+5r

(+)
2

(-)
6

8 14

K9

(+)
2

(-)
6

8 14

K8

(+)
2

(-)
6

8 14

K7+5r

+5r

+5r

2
1

3
4

R13

2
1

3
4

R9

2
1

3
4

R3

R10

R11

+5a

-5

+5a

-5

+5a

-5

R12

R 47K

R6

R 47K

+4.096

R14

R 47K

R4

R 47K

+4.096

R8

R 47K

R7

R 47K

+3.3

+3.3

ADC_CS
ADC_CLK

ADC_MISOADC_MOSI

I2C_SDA
I2C_SCL

I2C_SDA
I2C_SCL

1

2

3

4

4

6

78
U19
INA122PA

12

13
14

4
11

U11D

+5a

R19

(+)
2

(-)
6

8 14

K12

(+)
2

(-)
6

8 14

K11

(+)
2

(-)
6

8 14

K10+5r

+5r

+5r
R20

40k G=10

R21

R22

2105.26 G=100
201.005 G=1000

D2

D1

D3

D4

D5

D6

D9

D10

D11

D12

D13

D14

+5a

-5

BNC1

BNC2

BNC3

BNC4

3
1

2
R23
5K Trim

3
1

2
R24
5K Trim

3
1

2
R25
5K Trim

14
13

12

11
4

U10D
MCP6024-I/P

+5a

3
1

2
R28
5K Trim

3
1

2
R16
5K Trim

3
1

2
R26
5K Trim

R52

C7C9

+5a +5a

-5

-5

+4.096

R63
R 47K

R61

R 47K

3
1

2
R62
5K Trim

Dodatek C

Spis skrótów i symboli

AC alternating current, prąd przemienny

DC direct current, prąd stały

A/C analogowo-cyfrowy

C/A cyfrowo-analogowy

A/D analog/digital, analogowo-cyfrowy

D/A digital/analog, cyfrowo-analogowy

ADC Analog-Digital Converter , przetwornik A/C

DAC Digital-Analog Converter , przetwornik C/A

PWM Pulse-Width Modulation, modulacja szerokości impulsów

PDM Pulse-Density Modulation, modulacja gęstości impulsów

INL integral nonlinearity, nieliniowość całkowa

DNL differential nonlinearity, nieliniowość różniczkowa

MMIO memory-mapped input/output, sposób ułatwienia obsługi dostępu do i wykonywania
operacji na urządzeniach wejścia/wyjścia w systemach komputerowych

UART universal asynchronous receiver-transmitter , uniwersalny asynchroniczny nadajnik-
odbiornik

I2C Inter-Integrated Circuit, szeregowa, dwukierunkowa magistrala służąca do przesyła-
nia danych

SPI Serial Peripheral Interface, szeregowy interfejs urządzeń peryferyjnych

179

Dawid Najda

SQNR signal-to-quantization-noise ratio, stosunek mocy sygnału do zakłócenia kwantyzacji

DR Dynamic Range, rozpiętość tonalna, możliwa różnicaa między minimalną a maksy-
malną wartością

180

Spis rysunków

2.1 Symbole przetworników . 4
2.2 Przykład wyznaczania nieliniowości różniczkowej [2] 7
2.3 Przykład wyznaczania nieliniowości całkowej [2] 8
2.4 Schemat przetwornika Flash [4] . 11
2.5 Schemat przetwornika SAR [4] . 11
2.6 Schemat przetwornika Dual Slope [4] . 12
2.7 Schemat przetwornika ΣΔ [4]. Symulacja 13
2.8 Schemat przetwornika Ramp-Compare [4] 13
2.9 Schemat przetwornika Voltage-to-Frequency [4] 14
2.10 Schemat przetwornika PWM . 15
2.11 Schemat przetwornika ważonego dwójkowo, rezystorowy [4] 17
2.12 Schemat przetwornika ważonego dwójkowo, kondensatorowy [4] 17
2.13 Schemat przetwornika ważonego dwójkowo, napięciowy [4] 17
2.14 Schemat przetwornika ważonego dwójkowo, drabinka R-2R [4] 18
2.15 Schemat przetwornika cyklicznego [4] . 18
2.16 Schemat przetwornika termometrycznego, napięciowy [4] 19
2.17 Schemat przetwornika termometrycznego, prądowy [4] 19
2.18 Ogólny diagram urządzenia . 28

3.1 Płytka ewaluacyjna z chipem ESP-WROOM-32 31
3.2 Funkcyjny diagram blokowy procesora . 32
3.3 Schemat blokowy przetwornika MCP3204 [21] 32
3.4 Schemat blokowy przetwornika MCP4922 [22] 33
3.5 Diagram blokowy toru cyfrowego wejściowego 35
3.6 Schemat ideowy toru cyfrowego wejściowego 35
3.7 Diagram blokowy toru cyfrowego wyjściowego 35
3.8 Schemat ideowy toru cyfrowego wyjściowego 35
3.9 Diagram blokowy toru napięciowego wejściowego 36
3.10 Schemat ideowy toru napięciowego wejściowego 36
3.11 Diagram blokowy toru prądowego wejściowego 36
3.12 Schemat ideowy toru prądowego wejściowego 37

181

https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0l3AWAnC1b0DZwCZoHYBWAgDgLgO0gTKPGJAIcgYFMBaARg4CgB3EDggQhsYbAKEDiwyNwDGE4R2kjsSlcxjxI6XeiixIHA3B79saqcIvWE9Wf0HWxA7PVHjZHDJpHF74BgBlALaYbIATq7uLsTMHlChsgBKIJxYYEFp3iAIkAHMebmJmtAE3ADmqtZx1SJIWJrc3sJE4m70PvH+AiAFJQO+AGYAhgA2AM4sUM1ZXX6dLh3gfYNrTakEPgySW8wEeI0ioSJlp4ylRtypnCGUzOnucInGxjIlZdwIHEggGHYLEB4DjtHrGYh8RLLeIA2RVJwif6KepHWQjOrYJFgKiI4S-C5JbQDDhhbjo+KxCniX4cRicRgksLEyFsLYiHLxDncABu2RCYnotypAyKbDA0Eyg0+VSFOEFIOYmV8aORancljVq1p2QZ4WJpNSYAo7IyxuU73EjPiZ1wBJg5UcGTcuQBApmtMY2OsWJBuN6XloYEOfrAKkxShm-CN7RyXpNkfAOOwsaTtQc4GNyYywazCejIZzSNkAElwDnYzm0wZGA7chqkUJ3EXIY2-IVXc6A4Vass2oDjJ4GC2ew069ZR+nW+GXe408Put3OY15-Gg1hcykBBksjk8v1Re9SuVaftjcgsH3qFgB4la3sdq1tueZqWCLt38Jn0eh-w361dtsf4JvM3wXmeXK-mezyXhBDDgWB4hXjMADKaRsrmsobokoyTNM8TcAA9gIEAuIUOj0MQ0A-D8qDEJkHKGEYUICHgMyhlIIAAGLGA8n7ZCAABqBFjAALiMFQsNwQA

Dawid Najda

3.13 Diagram blokowy toru napięciowego wyjściowego 37
3.14 Diagram blokowy toru napięciowego wyjściowego 37
3.15 Schemat ideowy toru prądowego wyjściowego 38
3.16 Schemat ideowy toru analogowy prądowego wyjściowego 38
3.17 Przykładowe moduły Ethernet . 40
3.18 Schemat blokowy inicjalizacji wszystkich komponentów 41
3.19 Obrazek favicon.ico przedstawiający symbol przetwornika 42
3.20 Schemat blokowy interpretera . 46
3.21 Zdjęcie zbudowanego prototypu urządzenia 54

4.1 Przebieg wygenerowanej sinusoidy o częstotliwości 1 Hz 62
4.2 Przebieg wygenerowanej sinusoidy o częstotliwości 10 Hz 62
4.3 Przebieg wygenerowanej sinusoidy o częstotliwości 100 Hz 62
4.4 Przebieg wygenerowanej sinusoidy o częstotliwości 1 kHz 63
4.5 Przebieg wygenerowanej sinusoidy o częstotliwości 10 kHz 63
4.6 Przebieg wygenerowanej sinusoidy o częstotliwości 10 kHz po filtrowaniu . . 64
4.7 Panel przedni filtra model 3202R firmy Krohn-Hite 64
4.8 Przebieg sygnału sinusoidalnego . 65
4.9 Przebieg sygnału prostokątnego . 65
4.10 Przebieg sygnału trójkątnego . 66
4.11 Przebieg sygnału piłokształtnego . 66
4.12 Przebieg funkcji symulującej prosty inwerter 67
4.13 Przebieg funkcji symulującej prosty inwerter po przefiltrowaniu 67
4.14 Przebieg sygnału losowego i po lekkim przefiltrowaniu 67
4.15 Przebieg sygnału losowego i po mocniejszym przefiltrowaniu 68
4.16 Przebieg sygnału świergotowego . 69
4.17 Przebieg sygnału świergotowego logarytmicznego 69
4.18 Punkty pomiarowe wraz z dopasowaną funkcją 71
4.19 Amplituda pomiarów sygnału świergotowego w funkcji czasu/częstotliwości 71
4.20 Schemat układu użytego do przeprowadzenia doświadczeń 72
4.21 Zależność wzmocnienia od prądu kolektora tranzystora 2N3904 [8] 74
4.22 Charakterystyka wejściowa tranzystora 2N3904 75
4.23 Charakterystyka wejściowa tranzystora 2N3055 75
4.24 Charakterystyka przejściowa tranzystora 2N3904 76
4.25 Charakterystyka przejściowa tranzystora 2N3055 76
4.26 Charakterystyka wyjściowa tranzystora 2N3904 77
4.27 Charakterystyka wyjściowa tranzystora 2N3055 77
4.28 Charakterystyki różnych diod . 78
4.29 Schemat filtra oraz wartości komponentów 79

182

Spis rysunków

4.30 Przebieg sygnałów wejściowego i wejściowego 80
4.31 Odpowiedź częstotliwościowa amplitudy i fazy 81
4.32 Odpowiedź częstotliwościowa amplitudy i fazy 82
4.33 Odpowiedź częstotliwościowa amplitudy i fazy 83

183

Dawid Najda

184

Spis kodów

4.1 Klasa IOBlock upraszczająca obsługę urządzenia 56
4.2 Program służący do wgrywania ustawień do urządzenia 57
4.3 Program służący do odbierania pomiarów z urządzenia 57
4.4 Zadanie służące do generowania sinusoid 61
4.5 Przetestowane generatory . 64
4.6 Zadanie służące do generowania sinusoid 65
4.7 Przetestowane generatory sygnału świergotowego 68
4.8 Zadanie generujące i mierzące sygnały 68
4.9 Zadanie służące do badania odpowiedzi częstotliwościowej 70
A.1 Szablon definicji klasy zarządzającej ADC 94
A.2 Nazwane specjalizacje szablonu dla różnych układów z rodziny MCP3xxx . 95
A.3 Szablon definicji klasy zarządzającej DAC 96
A.4 Nazwane specjalizacje szablonu dla różnych układów z rodziny MCP4xxx . 96
A.5 Definicja klasy zarządzającej ekspanderem GPIO 98
A.6 Kod klasy SocketReader służącej do odczytu przesyłanych danych frag-

mentami . 100
A.7 Kod wewnętrznej klasy iterator służącej jako interfejs dla parsera . . . 101
A.8 Enumeracja OPCode istniejących operacji 102
A.9 Klasa Instruction reprezentująca instrukcję 103
A.10 Deklaracje klas i typów . 103
A.11 Klasa Scope reprezentująca listę operacji (zasięg widoczności) 104
A.12 Definicja klasy Loop przechowującej powtarzany Scope 104
A.13 Definicja klasy Program przetrzymującej zadanie 105
A.14 Przygotowanie tablicy zawierającej spis instrukcji i informacji o nich . . 106
A.15 Kod metody Program::parse odpowiedzialnej za konwersję z tekstu na

drzewo poleceń . 110
A.16 Kod klasy Generator używanej do produkcji przebiegów 111
A.17 Kod wirtualnej klasy Signal służącej do generowania podstawowych

kształtów fal . 112
A.18 Klasa SignalHdl do przechowywania klasy Signal oraz fabryki tejże . . 113
A.19 Klasa SignalConst generująca przebieg o stałej wartości 114

185

Dawid Najda

A.20 Klasa SignalImpulse generująca impuls w czasie 0 115
A.21 Klasa SignalSine generująca sinusoidę o podanym okresie 115
A.22 Klasa SignalSquare generująca prostokąt (typu PWM) o podanym okresie

i wypełnieniu . 116
A.23 Klasa SignalTriangle generująca trójkąt, piłę i pośrednie o podanym

okresie i czasie szczytu . 117
A.24 Klasa SignalChirp generująca świergot o podanym czasie, początkowej

częstotliwości i zmianie . 117
A.25 Klasa SignalChirpLog generująca świergot zmieniający się wykładniczo

w czasie (liniowo w skali logarytmicznej) o podanym czasie, początkowej
częstotliwości i mnożniku zmiany . 118

A.26 Klasa SignalRandom generująca wartości losowe w przedziale [−1, 1) . . 119
A.27 Klasa SignalDelay generująca opóźnienie innego sygnału 119
A.28 Klasa SignalAbsolute generująca wartość bezwzględną innego sygnału . 120
A.29 Klasa SignalClamp generująca inny sygnał ograniczony minimalną i mak-

symalną wartością . 121
A.30 Klasa SignalLinearMap generująca inny sygnał przetworzony przez funk-

cję liniową A · x + B . 121
A.31 Klasa SignalMultiply generująca iloczyn wartości dwóch innych sygnałów 122
A.32 Interfejs przestrzeni Communicator używanej do komunikacji miedzy wąt-

kami . 124
A.33 Zmienne “prywatne” przestrzeni Communicator 124
A.34 Funkcja parse_query tworząca słownik parametrów 126
A.35 Funkcja start_webserver ustawiająca i uruchamiająca serwer oraz

zmienne pomocnicze . 128
A.36 Funkcja favicon_handler wysyłająca plik favicon.ico 128
A.37 Funkcja welcome_handler wysyłająca odpowiedź powitalną w formacie

JSON . 129
A.38 Funkcja settings_handler odpowiedzialna za wgrywanie ustawień . . . 132
A.39 Funkcja io_handler uruchamiająca interpreter i przesyłająca pomiary do

użytkownika . 134
A.40 Interfejs przestrzeni Board . 136
A.41 Zmienne “prywatne” przestrzeni Board 139
A.42 Funkcje konwertujące kod na wartość symetryczną lub odwrotnie 139
A.43 Funkcja-szablon bin_to_phy konwertująca kod binarny na wartość rzeczy-

wistą . 140
A.44 Funkcja phy_to_dac zamieniająca wartość rzeczywistą na kod przetwor-

nika . 140
A.45 Funkcja analog_input_range ustawiająca zakres wejść portu 141

186

Spis kodów

A.46 Funkcja analog_inputs_disable wyłączająca wejścia analogowe 141
A.47 Funkcja analog_inputs_enable włączająca wejścia analogowe 142
A.48 Funkcja analog_input_read wykonująca pomiar wejścia 142
A.49 Funkcja analog_output_write wpisująca kod do przetwornika 143
A.50 Funkcja analog_outputs_reset zerująca wyjścia analogowe. 144
A.51 Funkcja digital_outputs_to_registers ustawiająca wyjścia cyfrowe. . 144
A.52 Funkcje zarządzające wyjściami cyfrowymi 145
A.53 Funkcja digital_inputs_read odczytująca stan wejść cyfrowych. 145
A.54 Funkcja port_cleanup inicjalizująca/resetująca wejścia i wyjścia. 146
A.55 Funkcja sync_callback uruchamiana jako przerwanie przez timer 146
A.56 Makra pomocnicze do synchronizacji wykonywania zadania 147
A.57 Funkcja init ustawiająca wszystkie podzespoły po otrzymaniu zasilania 150
A.58 Funkcja move_config zapisująca program i generatory 150
A.59 Funkcja give_sem_emergency dająca semafor z zewnątrz 151
A.60 Funkcja interpreter_task będąca zadaniem/wątkiem interpretera . . . 158
A.61 Program do wyznaczenia odpowiedzi częstotliwościowej wejścia. 162
A.62 Program do wygenerowania charakterystyki wejściowej tranzystora . . . 164
A.63 Program do wygenerowania charakterystyki przejściowej tranzystora . . 165
A.64 Program do wygenerowania charakterystyki wyjściowej tranzystora . . . 167
A.65 Program do wyznaczenia odpowiedzi częstotliwościowej filtra. Sposób 1. 171
A.66 Program do wyznaczenia odpowiedzi częstotliwościowej filtra. Sposób 2. 174

187

Dawid Najda

188

	Wstęp
	Cel pracy
	Zakres pracy

	Analiza tematu
	Przetworniki
	Cel przetwarzania sygnałów
	Zasada działania przetworników
	Parametry charakteryzujące przetworniki

	Ocena jakości działania przetworników
	Parametry termiczne
	Monotoniczność
	Nieliniowość przetwarzania
	Błąd niezrównoważenia
	Błąd kwantyzacji
	Współczynnik zawartości harmonicznych

	Techniki pomagające poprawić jakość
	Dither
	Budowa przetworników
	Budowa przetworników analogowo-cyfrowych
	Budowa przetworników cyfrowo-analogowych

	Komunikacja z peryferiami
	Układ UART
	Magistrala I2C
	Interfejs SPI

	Połączenie między urządzeniami
	Łącze RS-232
	Łącze RS-485
	Magistrala USB
	Standard Ethernet
	Standard Wi-Fi
	Standard Bluetooth

	Wybór sposobu komunikacji
	Gniazda (sockets)
	WebSocket
	Serwer HTTP

	Koncepcja pracy
	Zadawanie zadań urządzeniu

	Konstrukcja budowanego urządzenia
	Użyte podzespoły
	Mikrokontroler
	Przetworniki A/C i C/A
	Wzmacniacze
	Inne układy
	Schematy ideowe torów

	Połączenie z komputerem
	Oprogramowanie
	Inicjalizacja układu
	Praca ciągła

	Punkty końcowe API
	Powitanie, pomoc, ogólne informacje
	Wgrywanie zadania do urządzenia
	Wykonywanie zadania i odbiór danych

	Parser i interpreter
	Zamiana tekstu na format binarny – parser zadania
	Interpreter zadań

	Wykonywanie zadań
	Pętle
	Instrukcje

	Generator sygnałów
	Typy przebiegów możliwych do użycia w generatorach
	Modyfikatory przebiegów
	Opis przykładowych generatorów

	Prototyp bloku wejść-wyjść analogowych i cyfrowych

	Kalibracja i testy urządzenia
	Kalibracja wejść i wyjść
	Kalibracja wejść analogowych
	Kalibracja dzielników napięcia i wzmocnień
	Kalibracja wyjścia napięciowego
	Kalibracja wyjścia prądowego
	Test wejść cyfrowych
	Test wyjść cyfrowych

	Sprawdzenie charakterystyki częstotliwościowej wyjścia
	Przykładowe generatory – podstawowe sygnały
	Odpowiedź częstotliwościowa wejścia napięciowego
	Badanie sygnałem sinusoidalnym
	Badanie sygnałem świergotowym

	Eksperyment 1 – wyznaczenie charakterystyk tranzystora BJT
	Badanie charakterystyki wejściowej tranzystora
	Badanie charakterystyki przejściowej tranzystora
	Badanie charakterystyki wyjściowej tranzystora
	Wykresy charakterystyk tranzystorów 2N3904 i 2N3055 wyznaczone za pomocą prototypu bloku wejść-wyjść

	Eksperyment 2 – wyznaczenie charakterystyk diod półprzewodnikowych
	Eksperyment 3 – wyznaczenie odpowiedzi częstotliwościowej filtra

	Podsumowanie
	Bibliografia
	Dokumentacja techniczna
	Oprogramowanie
	Klasy
	Obsługa przetwornika A/C
	Obsługa przetwornika C/A
	Obsługa ekspandera GPIO
	Odczytywanie ustawień
	Zadania
	Parser
	Generatory

	Przestrzenie nazw
	Komunikacja między wątkami
	Serwer HTTP
	Obsługa sprzętu i interpreter

	Programy służące do pomiarów
	Wyznaczanie charakterystyki częstotliwościowej wejścia
	Wyznaczanie charakterystyki wejściowej tranzystora
	Wyznaczanie charakterystyki przejściowej tranzystora
	Wyznaczanie charakterystyki wyjściowej tranzystora
	Wyznaczanie odpowiedzi częstotliwościowej świergotem
	Wyznaczanie odpowiedzi częstotliwościowej sinusoidami

	Schemat ideowy całego bloku wejść-wyjść analogowych i cyfrowych
	Spis skrótów i symboli
	Spis rysunków
	Spis kodów

