Politechnika
Slaska

PRACA MAGISTERSKA

Uniwersalny blok wejs¢ - wyjs¢ analogowych i cyfrowych do komputera PC

Dawid NAJDA
Nr albumu: 281533

Kierunek: Automatyka i Robotyka
Specjalnos¢: Robotyka

PROWADZACY PRACE
dr inz. Mirostaw Magnuski
KATEDRA Elektroniki, Elektrotechniki i Mikroelektroniki
Wydziat Automatyki, Elektroniki i Informatyki

Gliwice 2024

Tytul pracy

Uniwersalny blok wejs¢ - wyjsé analogowych i cyfrowych do komputera PC

Streszczenie

Niniejsza praca magisterska przedstawia projekt i realizacje uniwersalnego bloku wejs$é-
wyjs¢ analogowych i cyfrowych dla komputera PC. W ramach pracy stworzono urzadzenie,
ktore umozliwia zdalne pomiary i generowanie sygnalow oraz przesyt rezultatow pomia-
row do uzytkownika za pomoca standardowych interfejséw komunikacyjnych. W pracy
opisano zastosowane przetworniki, techniki komunikacji z peryferiami, najwazniejsze ele-
menty oprogramowania oraz sposob sterowania dziataniem urzadzenia. Przeprowadzono
réwniez kalibracje oraz eksperymenty, ktéore potwierdzity funkcjonalnosé i poprawnosé
dzialania zbudowanego prototypu. Praca konczy sie omoéwieniem uzyskanych wynikéw

oraz propozycjami dalszego rozwoju projektu.

Stowa kluczowe

zdalne potaczenie, blok wejsé-wyjsé, przetworniki, analogowo-cyfrowe, cyfrowo-analogowe

Thesis title

Universal analog and digital input - output block for PC computer

Abstract

This master’s thesis presents the design and implementation of a universal analog and
digital input-output block for a PC. As part of the project, a device was created that en-
ables remote measurements and signal generation, as well as the transmission of measure-
ment results to the user via standard communication interfaces. The thesis describes the
applied converters, techniques for communication with peripherals, key software compon-
ents, and the method of controlling the device’s operation. Calibration and experiments
were also conducted, confirming the functionality and correctness of the constructed pro-
totype. The thesis concludes with a discussion of the obtained results and proposals for

further development of the project.

Key words

remote connection, input-output block, converters, analog-to-digital, digital-to-analog

Spis tresci

Wsten 1
(1.1 Cel pracy|] 2
(1.2 Zakres pracy|. 2

2 Analiza tematul 3
2.1 Przetwornikil 3
[2.1.1 Cel przetwarzania sygnatow| 3
[2.1.2 Zasada dziatania przetwornikow| 4
[2.1.3 Parametry charakteryzujace przetworniki)

[2.2 Ocena jakosci dziatania przetwornikow|{ 6
[2.2.1 Parametry termiczne]o 6
2.2.2 Monotonicznosdo 6
[2.2.3 Nieliniowos¢ przetwarzania 6
[2.2.4 Blad niezrownowazenial 8
[2.2.5 Btad kwantyzacji| oo 8
[2.2.6 Wspotczynnik zawartosci harmonicznych| 9

[2.3 Techniki pomagajace poprawicC jakosc| 9
2.3.1 Ditherl 9
[2.3.2 Budowa przetwornikow{ 9
[2.3.3 Budowa przetwornikow analogowo-cyfrowych|. 10
[2.3.4 Budowa przetwornikow cytrowo-analogowych| 15

[2.4 Komunikacja z peryferiamil 20
241 Uktad UART] o 0000000 20
[2.4.2 Magistrala 12C oo 21
[2.4.3 Intertejs SPI|.o 21

[2.5 Potaczenie miedzy urzadzeniami| 22
[2.5.1 tacze RS-2320 22
[2.5.2 tacze RS-485 22
[2.5.3 Magistrala USB| 0000 23
.54 Standard Bthernetlo o000 23
2.0.50 Standard Wi-Fil00 24

2.6 Wybor sposobu komunikacji|o 25
[2.6.1 Gniazda (sockets)| 25
2.6.2 Webbocket]. oo 26
263 Serwer HI'TPl 27

[2.7 Koncepcja pracy| 28
[2.7.1 Zadawanie zadan urzadzeniu|. 29

[3 Konstrukcja budowanego urzadzenial 31

[3.1 Uzyte podzespoty| 31
(B.1.1 Mikrokontrolerl oo 31
[3.1.2 Przetworniki A/Ci C/Al 32
B.1.3 Wzmacniaczel 33
[3.1.4 Inneuktady|o 34
[3.1.5 Schematy ideowe torow|. 34

[3.2 Potaczenie z komputerem|. 38

[3.3 Oprogramowanie| 40
[3.3.1 Inicjalizacja uktadu| 40
[3.3.2 Pracaciagtal oo 41

[3.4 Punkty koncowe API[. 42
[3.4.1 Powitanie, pomoc, ogélne informacjel 42
[3.4.2 Werywanie zadania do urzadzenial 42
[3.4.3 Wykonywanie zadania 1 odbior danychf 43

[3.5 Parser iinterpreter| L 43
[3.5.1 Zamiana tekstu na format binarny — parser zadania 44
[3.5.2 Interpreter zadan|o 44

[3.6 Wykonywanie zadan| o oL 47
................................... 47
[3.6.2 Instrukcjel 47

[3.7 Generator sygnatow|. 49
[3.7.1 'T'ypy przebiegow mozliwych do uzycia w generatorach| 50
[3.7.2 Modyfikatory przebiegow|. o1
[3.7.3 Opis przyktadowych generatorow| 52

[3.8 Prototyp bloku wejsc-wyjsc¢ analogowych 1 cytrowychl 53

[4 Kalibracja i testy urzadzenial 55

[4.1 Kalibracja wejs¢ i wyjselo 56
[4.1.1 Kalibracja wejs¢ analogowych| 57
[4.1.2 Kalibracja dzielnikow napiecia 1 wzmocnien| 58

[4.1.3 Kalibracja wyjscia napieciowego| 58

[4.1.4 Kalibracja wyjscia pradowego| 59

[4.1.5 'Test wejsc cyfrowych|o 60

[4.1.6 Test wyjsc cytfrowychl 60

[4.2 Sprawdzenie charakterystyki czestotliwosciowe] wyijscial 61
[4.3 Przyktadowe generatory — podstawowe sygnaty|. 64
[4.4 Odpowiedz czestotliwosciowa wejscia napieciowego|. 70
[4.4.1 Badanie sygnatem sinusoidalnym| 70

[4.4.2 Badanie sygnatem swiergotowym| 71

[4.5 Eksperyment 1 — wyznaczenie charakterystyk tranzystora BJ'T| 72
[4.5.1 Badanie charakterystyki wejsciowej tranzystora|] 72

[4.5.2 Badanie charakterystyki przejsciowej tranzystora| 73

[4.5.3 Badanie charakterystyki wyjsciowej tranzystora] 73

[4.5.4 Wykresy charakterystyk tranzystorow 2N3904 i 2N3055 wyznaczone |

[za pomoca prototypu bloku wejsc-wyjscl. Lo 74
4.6 Eksperyment 2 — wyznaczenie charakterystyk diod potprzewodnikowych|. . 78
[4.7 Eksperyment 3 — wyznaczenie odpowiedzi czestotliwosciowej filtra] 79

5 Podsumowaniel 85
B1b 90
(A Dokumentacja technicznal 93
[A.1 Oprogramowanie| 93

A Klasyl. . . . o 93
[A.2.1 Obstuga przetwornika A/C[. 93

[A.2.2 Obstuga przetwornika C/A[. 95

[A.2.3 Obstuga ekspandera GPIO[. 96

[A.2.4 Odczytywanie ustawienl 99

[A25 Zadanial 102

[Al2.6 Parserl 105

[A.2.7 Generatory| 110

[A.3 Przestrzenie nazwlo 123
[A.3.1 Komunikacja miedzy watkami| 123

[A.3.2 Serwer HTTPl o o e e 125

[A.3.3 Obstuga sprzetu i interpreter{. 135

[A.4 Programy stuzace do pomiarow| L. 159
[A.4.1 Wyznaczanie charakterystyki czestotliwosciowej wejscial 159

[A.4.2 Wyznaczanie charakterystyki wejsciowej tranzystoral 162

[A.4.3 Wyznaczanie charakterystyki przejsciowej tranzystoral 164

[A.4.4 Wyznaczanie charakterystyki wyjsciowej tranzystoraf. 166

[A.4.5 Wyznaczanie odpowiedzi czestotliwosciowe] Swiergotem|

[A.4.6 Wyznaczanie odpowiedzi czestotliwosciowej sinusoidami|

[B Schemat ideowy catego bloku wejsc-wyjs¢ analogowych 1 cyfrowych|

[C Spis skrotow 1 symboli

[Spis rysunkow|

175

179

183

187

Rozdziat 1

Wstep

Urzadzenia pomiarowe znajduja szerokie zastosowanie w praktycznie kazdej dziedzinie
techniki i nauki, w przemysle, w laboratoriach naukowych oraz po prostu przy zastosowa-
niach domowych. Oczywiscie, w zaawansowanych procesach stosuje sie dedykowane urza-
dzenia zaprojektowane specjalnie do tego celu. Jednakze w wielu sytuacjach, szczegdlnie
niestandardowych lub niespodziewanych, mozliwe (a nawet konieczne) jest wykorzystanie
urzadzen uniwersalnych, i dostosowanie ich do biezacych potrzeb, cho¢by ze wzgledu na
czas i koszt stworzenia rozwigzania dedykowanego. Zaleta w takich sytuacjach z pewnoscia
jest wielofunkcyjno$¢ danego urzadzenia, co pozwala ograniczy¢ miejsce, ilos¢ przewodow
czy czas. Dodatkowym pozytywem jest mozliwos¢ zdalnej komunikacji z takim urzadze-
niem, co pozwala na umieszczenie go na przemieszczajacym sie obiekcie lub w srodowisku
niesprzyjajacym przebywaniu ludzi.

Najczesciej bezposrednio mierzong wielkoScig jest napiecie. Za jego pomocg zas mozna
mierzy¢ inne wielkosci fizyczne, uzywajac odpowiednich uktadéw dokonujgcych analo-
gowych konwersji. Sa to na przyktad: natezenie pradu, opér, pojemnosé, indukcyjnosé,
natezenia pol elektrycznych i magnetycznych, natezenie swiatta i dzwieku, site nacisku,
ciSnienie, wage, mase, moment obrotowy, i wiele, wiele innych.

Najczesciej wyjsciowa wielkosScig jest rowniez napigcie, zas za jego pomoca mozna gene-
rowa¢ inne wielkodci fizyczne, uzywajac odpowiednich uktadéw analogowych lub wzmac-
niaczy — np. natezenie pradu, pole elektryczne lub magnetyczne, swiatto, dzwiegk, ruch

liniowy lub obrotowy i inne.

W czasach przed epoka cyfrowa wykorzystywato sie rézne urzadzenia pomiarowe do
przedstawienia danych lub przebiegéw operatorowi, ktéry na ich podstawie mégt podej-
mowac jakies decyzje. Wspotczesnie rowniez sa one wykorzystywane, jednak coraz czesciej
(szczegdlnie takie wymagajace analizy) przetwarzane sa komputerowo, dlatego duza za-
leta jest urzadzenie pomiarowe, ktore dziata rowniez cyfrowo oraz potrafi w prosty sposéb
taczy¢ sie z komputerem. Urzadzenia cyfrowe utatwiaja tez obserwacje zdarzen losowych,

nawet pojedynczych.

Dawid Najda

1.1 Cel pracy

Celem pracy jest stworzenie uniwersalnego bloku wejs¢ - wyjs¢ analogowych i cy-
frowych do komputera PC. Ma to by¢ elektroniczne urzadzenie pomiarowe, sterowane
zdalnie za pomoca komputera osobistego. Powinno ono by¢ mozliwie uniwersalne — by¢ w
stanie przynajmniej w ograniczonym zakresie zastepowaé narzedzia takie jak multimetr

[7], oscyloskop, generator funkeji/sygnatéw [29] czy generator wzorcéow cyfrowych.

1.2 Zakres pracy

Budowany blok pomiarowy bedzie wyposazony w wejscia i wyjscia analogowe, zarowno
napieciowe jak i pradowe. Oprocz tego, dostepne beda réwniez wejécia i wyjscia cyfrowe.
Wszystkie porty analogowe powinny obstugiwaé¢ zaréwno dodatnie jak i ujemne polaryza-
cje sygnatow. Wejscia analogowe powinny mie¢ wybieralne zakresy wartosci. Urzadzenie
zostanie zbudowane na plytce uniwersalnej, ktora otrzyma obudowe stworzong za pomoca
drukarki 3D. Niektére komponenty (szczegélnie mikroprocesor) beda uzyte w postaci go-
towych ptytek w celu unikniecia montazu elementéw SMD oraz ze wzgledu na generalnie
mniejszy rozmiar, krotsze potaczenia, a wiec i lepsze dziatanie w tego typu rozwiazaniach.
Catos¢ zarzadzana bedzie przez mikrokontroler, oprogramowany w jezyku C++, z ktorym

mozna bedzie si¢ komunikowaé za pomoca komputera osobistego.

Rozdziat 2

Analiza tematu

2.1 Przetworniki

Przetworniki to uktady elektroniczne majgce na celu zamiane jakiejs wielkosci fizycznej
(najczesciej napiecia) na wartosci cyfrowe (zdyskretyzowane i skwantowane) lub vice-

versa.

2.1.1 Cel przetwarzania sygnaléw
Przetwarzanie analogowo-cyfrowe

Przetwornik A/C (ang. 4/D — Analog to Digital, ADC — Analog-Digital Converter) —
jest to uktad elektroniczny stuzacy do zamiany sygnatu analogowego na sygnal cyfrowy.
Dzigki temu mozliwe jest przetwarzanie ich w urzadzeniach elektronicznych opartych o
architekture zero-jedynkows oraz przechowywanie na dostosowanych do tej architektury
nosnikach danych.

Najczesciej bezposrednio mierzong wartoscia jest napiecie, zas za jego pomocg mozna mie-
rzy¢ inne wielkosci fizyczne, uzywajac odpowiednich uktadéw analogowych — np. natezenie
pradu i opér, natezenie pola elektrycznego i magnetycznego, pojemnosé i indukcyjnosé,
natezenie Swiatta lub dzwieku, site nacisku, wage, mase, moment obrotowy, i wiele, wiele

innych. Wyspecjalizowane przetworniki stuza tez do robienia zdjec.

Przetwarzanie cyfrowo-analogowe

Przetwornik C/A (ang. D/A — Digital to Analog, DAC — Digital-Analog Converter) —
jest to uktad elektroniczny zamieniajacy sygnal cyfrowy na sygnal analogowy. Dzieki
temu istnieje mozliwos¢ wpltywu na systemy analogowe, mechaniczne, itp. za pomoca
kontrolerow cyfrowych.

Najczesciej generowang wartoscig jest napiecie, zas za jego pomocg mozna tworzy¢ inne

wielkosci fizyczne, uzywajac odpowiednich uktadéw analogowych lub wzmacniaczy — np.

Dawid Najda

natezenie pradu, pole elektryczne lub magnetyczne, $wiatto, dzwiek /muzyke, ruch liniowy

lub obrotowy i inne.

2.1.2 Zasada dzialania przetwornikéw

V<IN ADC out -J1J1 JTUL9qmIN DAC out)>-"\/\,

(a) Analogowo-cyfrowy (b) Cyfrowo-analogowy

Rys. 2.1: Symbole przetwornikdw

Przetworniki analogowo-cyfrowe

Przetwarzanie A/C dzieli si¢ ogdlnie na 3 etapy: probkowanie, kwantyzacja i kodowa-
nie. Najpierw nalezy stworzy¢ sygnal dyskretny, reprezentujacy sygnat ciggly w czasie za
pomoca listy wartosci nazywanych probkami. Nastepnie przeprowadza si¢ kwantyzacje —
czyli zastepuje probki, ktore moga przyjmowaé dowolne wartosci, na jakas skonczona ilosé
stanéw, za pomoca wewnetrznych elementéw przetwornika [15]. Finalnie, stan wewnetrzny
zamieniany jest na odpowiednie kody binarne, ktére mozna potem wyprowadzi¢: bezpo-

srednio na zewnatrz — rownolegle, lub przestaé szeregowo za pomocg dowolnego protokotu.

Przetworniki cyfrowo-analogowe

Przetwarzanie C/A dzieli sie ogélnie na 3 etapy: dekodowanie, generacja, wystawia-
nie. Najpierw, kod binarny jest odbierany, albo przez wejscie rownolegte, albo szeregowe.
Potem jest zamieniany na odpowiedni stan wewnetrzny. Nastepnie ma miejsce generacja
— za pomoca elementow ustawionych w poprzednim kroku, tworzona jest odpowiadajaca
warto$¢. Finalnie, jest ona przekazana na wyjscie i podtrzymana za pomocg elementu

buforujacego [15].

Podsumowanie

Oba rodzaje przetwornikéw sg bardzo podobne pod wzgledem idei dziatania. Oczywi-
Scie proces musi by¢ w odwrotnej kolejnosci. Przetwarzanie A/C jest popularniejsze niz
C/A, ze wzgledu na to, ze przewaznie zalezy nam na zbieraniu informacji z wielu czujnikéw
lub elementéw, na podstawie zbioru ktérych opracowywane jest przez uktad kontrolujacy
odpowiednie sterowanie jakim$ elementem. Tak samo kazde sprzezenie zwrotne, wykonane

cyfrowo, musi mie¢ w sobie przetwornik A/C.

4

Rozdzial 2. Analiza tematu

2.1.3 Parametry charakteryzujace przetworniki

Kazdy przetwornik jest opisany przez kilka parametrow, z czego niektore sa wzajemnie
zalezne. Wystepuja one w obu typach, jednak moga nosi¢ inng nazwe lub, zaleznie od

kierunku, ich funkcja moze sie zmieniac.

Zakres

Oznacza on zakres napie¢ wejsciowych lub wyjsciowych, ktory przetwornik moze po-
prawnie odczytac¢ lub wytworzy¢; nazywany jest ,,prawidtowym zakresem konwersji” prze-
twornika. Zakres ma zawsze dolng i gérng granice: Urange = Uupper — Ulower- Najczesciej
wyrdznia sie dwa przypadki: Ujyer = 0V — klasyfikowany jako jednobiegunowy (unipo-
larny), Uipwer = —Uwpper — klasyfikowany jako dwubiegunowy (bipolarny).

Przetwornik A/C nie moze dostarczy¢ wiarygodnych konwersji, jesli napiecie wejsciowe
jest poza zakresem. Najczesciej zwrdcony kod bedzie odpowiadaé napieciu granicznemu,
ktore zostato przekroczone. Przetwornik C/A (pomijajac celowa konstrukeje) ze zrozumia-

tych wzgledow nie przekroczy na wyjsciu napieé¢ zasilania.

Liczba bitéw

Liczba bitéw (oznaczana N) okresla dtugosé stowa wyjsciowego lub wejsciowego. Naj-
czesciej stosowany jest kod w postaci liczby catkowitej, w przypadku przetwornikéw bi-
polarnych przewaznie stosuje si¢ kod z przesunigciem lub kod uzupetnien do dwoéch, ze
wzgledu na powszechnos¢ tej reprezentacji w systemach komputerowych. Kazdy bit ozna-
cza podwojenie ilo$ci pozioméw kwantyzacji (gdyz jeden poziom kwantyzacji to jeden kod
bitowy), zgodnie ze wzorem #.40s = 2. Najnizszy kod to 0, zaé najwyzszy — 2V — 1.

Liczba bitéw bezposrednio okresla rowniez tzw. dynamic Range, jest to roznica miedzy

maksymalnym i minimalnym sygnatem, podana w decybelach.

2N
DR = 201g <1> —201g(2)N ~ 6NdB

Rozdzielczosé

Pojecie to oznacza najmniejszg réznice w analogowym sygnale, jaka moze wykry¢ lub
wytworzy¢ przetwornik, odpowiadajaca przetaczeniu najnizszego bitu. Wyznaczana jest
jako stosunek zakresu napiecia do ilosci kodéw cyfrowych [16].

Urange
Ursp = N

Dawid Najda

Czestotliwosé

Czestotliwosé okresla ile probek w danym okresie czasu moze zosta¢ pobrane. Podaje
sie ja w Hz lub sps (ang. samples per second, probki na sekunde). Parametr ten moze
zostaé réwniez jako odwrotnosé, tzn. okres lub czas probkowania. Okresla on co ile moze
zosta¢ pobrana lub wystawiona warto$é¢ analogowa. Jest to jeden z najwazniejszych pa-
rametrow, gdyz okresla maksymalng czestotliwosé sygnatu jaki przetwornik jest w stanie
zmierzy¢ lub wytworzy¢, zgodnie z twierdzeniem Nyquista—Shannona. Wptywa réwniez na
rozdzielczos¢ w czasie, aliasing, zuzycie energii oraz wymagania dotyczace przetwarzania

danych cyfrowych.

2.2 Ocena jako$ci dziatania przetwornikow

Zrozumiatym jest, ze przetworniki, jak kazdy fizyczny obiekt, nie dzialaja w sposdb
idealny. Nawet gdyby mogty, i tak sama idea dziatania narzuca pewne ograniczenia. Pre-
cyzja zalezy od jakosci wykonania oraz warunkéw otoczenia. Ponizej przedstawione sg

parametry opisujace doktadnosé i jako$¢ dziatania przetwornikéow.

2.2.1 Parametry termiczne

Zmiana temperatury pracy, czy to przez zmiang temperatury otoczenia, czy wydziela-
nie ciepta, ma wpltyw na zachowanie fizycznych elementéw przetwornika, a wiec i na wynik
jego pracy. Teoretycznie wszystkie rodzaje btedu moga si¢ zmienia¢ wraz z temperatura,
czesto jednak karty katalogowe uwzgledniaja juz zalecany przedzial temperatur pracy
w wartosciach btedow. Najczesciej jednak spotykany jest wspotczynnik zmian cieplnych

napiecia przesuniecia zera, wyrazany w % lub %.

2.2.2 Monotonicznosé

W przetwornikach C/A, jest to zdolnos¢ uktadu do zmiany napiecia wytacznie w tym
samym kierunku co zmiana wejsciowego stowa cyfrowego. Oznacza to, ze jesli wartos¢
zadana rosnie, to napiecie na wyjsciu nie moze zmale¢ i vice versa. Jest to cecha pozadana
w zrodtach sygnatéw niskiej czestotliwosci oraz w przetwornikach wykorzystywanych jako
programowalny trymer (nastawny komponent elektryczny stuzacy do kalibracji dziatania

uktadu).

2.2.3 Nieliniowos$¢ przetwarzania

Wszystkie przetworniki cierpia na nieliniowos$é¢ ze wzgledu na niedoskonatosci w proce-
sie produkcji. Powoduje to, ze napiecie nie jest idealnie (liniowo lub inaczej, w przypadku

specjalnego nieliniowego przetwornika) powiazane ze stowem. Nieliniowosci podaje sie jako

6

Rozdzial 2. Analiza tematu

procent wartosci maksymalnej lub jako krotno$é¢ napiecia nominalnego odpowiadajacemu

najnizszemu bitowi U,,.

Nieliniowosé rézniczkowa

Nieliniowo$¢ rézniczkowa (ang. DNL — differential nonlinearity) okredla sie przez wy-
znaczenie réznic miedzy sasiednimi warto$ciami napiecia, wywolujacych (dla A/C) lub
wywolywanych przez (dla C/A) zmiane stowa o warto$é najnizszego bitu [16]. Okresla
ona wigc btad jednorodnosci szerokosci pozioméw kwantyzacji. Nieliniowos¢ rézniczkowa
jest wyznaczana jako maksymalna roznica (zaréwno dodatnia jak i ujemna) pomiedzy
rzeczywista U, a nominalng U, szeroko$cig danego poziomu kwantyzacji:

|Ur — Un|
= ——————MarTgoRp

n

€d

Dla przyktadu: Na ponizszym rysunku, w maksymalnym przypadku, szerokos$¢ stopnia
wynosi 1.5 LSB (o wartosci wyjéciowej 101). Przez to DNL wyniesie +0.5 LSB. Natomiast
w minimalnym przypadku szeroko$¢ kroku wynosi tylko 0.5 LSB (dla wartosci wyjsciowej

001), czyli o 0.5 LSB mniej niz oczekiwana. Finalnie DNL bedzie wynosi¢ £0.5 LSB.

Output 4
code
111

Actual ADC —» ;

110

1017 0.6LSE wide,

DNL =-0.5LSB

100 7

011 |
010 7] 1.5LSB wide,
DNL = +0.5LSB

01| 74— 1deal anC
I T I T I I
0 025 05 075 10 125 15 175 20
Vi [V]

L4

Rys. 2.2: Przyklad wyznaczania nieliniowosci rézniczkowej [2]

W skrajnym przypadku, niektére kody wyjsciowe moga nigdy nie wystapi¢ i utracona

zostaje monotonicznos¢. Wtedy dolna granica DNL wychodzi poza -1 LSB.

Nieliniowos$é caltkowa

Nieliniowo$¢ catkowa (ang. INL — integral nonlinearity) jest okreslana jako (AU;)maz —
maksymalna réznica napiecia pomiedzy rzeczywista charakterystyka przetwarzania @ =
f(U.) lub U, = f(Q) a charakterystyka idealna U;; odniesiona do nominalnej wartosci
napiecia U,, odpowiadajacej najmniej znaczacemu bitowi [16]. Charakterystyke idealng,

wyznacza si¢ jako prosta taczaca skrajne punkty zakresu przetwarzania, charakterystyke

7

Dawid Najda

rzeczywistg natomiast jako linie taczaca srodki przedzialow napiecia odpowiadajacych
kolejnym wartosciom cyfrowym przetwornika.
|UT - Ui|
— 4 “fmerygp
Un

INL mozna interpretowa¢ jako pewnego rodzaju sume nieliniowosci rézniczkowych
(DNL). Na przyktad kilka kolejnych ujemnych wartoéci DNL przesuwa rzeczywista krzywa w
lewo, a wiec podnosi ja powyzej krzywej idealnej, jak pokazano na rysunku ponizej. INL
w tym przypadku jest dodatni. Ujemne INL wskazuja, ze rzeczywista krzywa znajduje
si¢ ponizej krzywej idealnej. Podsumowujac, rozklad nieliniowosci rézniczkowej okresla

nieliniowos¢ catkowsq przetwornika.

Qutput *
code
111 7
110 7 ,
Actual ADC — <~
101 -
100 —
011 7
010 — Max INL = +0.75LSB
001 7 .7
/,-*4———Ideal ADC
ano T | T | T \ T —
0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

Vin [V]

Rys. 2.3: Przyktad wyznaczania nieliniowosci catkowej [2]

2.2.4 Blad niezré6wnowazenia

Znany tez jako blad przesuniecia zera; jest okreslany (dla A/C) przez wartosé napiecia
wejsciowego potrzebna do przejscia od zerowej wartosci stowa wyjsciowego do nastep-
nej wiekszej wartosci, lub (dla C/A) warto$¢ napiecia wyjsciowego odpowiadajaca zerowej
wartosci stowa wejsciowego. Mierzony jako przesuniecie w stosunku do charakterystyki
idealnej, tj. %LSB. W wigkszosci nowoczesnych przetwornikéw jest jednak mozliwa catko-

wita kompensacja tego btedu.

2.2.5 Blad kwantyzacji

W przetwornikach A/C, btad kwantyzacji jest wprowadzony przez proces kwantyzacji,
obecny nawet w idealnym urzadzeniu. Ze wzgledu na ograniczong dhugos¢ stowa, wartosci
ciggte sa zamieniane na zbiér kodéw o ograniczonej liczebnosci. Btad ten jest zalezny od
przebiegu sygnatu, do tego nie liniowo od wartosci napiecia. W idealnym przetworniku

A/C, btad jest réwnomiernie roztozony w przedziale j:% LSB (wartos¢ bezwzgledna bledu

8

Rozdzial 2. Analiza tematu

jest mniejsza niz pot rozdzielczosei). Dla sygnatu o wartosciach roztozonych réwnomiernie
w zakresie przetwarzania, stosunek mocy sygnatu do zaklécenia kwantyzacji (ang. signal-

to-quantization-noise ratio) jest réwny Dynamic Range:

SQNR = DR

2.2.6 Wspoblczynnik zawartosci harmonicznych

Wspotezynnik zawartosci harmonicznych i szum (ang. THD+N — Total harmonic dis-
tortion and noise) okresla zawarto$é¢ znieksztalcen i zaktocen wprowadzonych do sygnatu
przez przetwornik C/A. Jest wyrazony jako stosunek sumy mocy niechcianych sktadowych

harmonicznych oraz szumu do mocy sygnalu pozadanego.

2.3 Techniki pomagajgce poprawic¢ jakosé

2.3.1 Dither

W przetwornikach A/C, jako$¢ moze by¢ zazwyczaj poprawiona przez tzw. dithering.
Jest to proces dodania bardzo stabego szumu (np. biatego) do mierzonego sygnatu. Po-
zwala to roztozy¢ btad kwantyzacji z przebiegu ,piloksztalttnego” na duzo bardziej staty.
Poprawia tez precyzje pomiaru cigglego, gdyz zamiast zaokraglania w jedna strone, przez
odchyty moze powodowac przeskok bitow, a wiec przy usrednianiu w czasie — lepsza precy-
zje. Niestety w zamian delikatnie wzmacnia zakt6cenia. Proces ten jest uzywany np. przy
redukcji dtugosci stowa (m.in. przy zmianie jakosci obrazéw) lub w uktadach catkujacych,

gdzie drobny btad kwantyzacji mogtby sie nawarstwia¢ w czasie.

2.3.2 Budowa przetwornikow

Niektére przetworniki maja zewnetrzne napiecie odniesienia, za$ inne — wewnetrzne.
Jest ono tak nazywane, poniewaz to w stosunku do jego wartosci sa poréwnywane probki.
W przypadku przetwornikéw A/C, wzgledem napiecia odniesienia mierzone sa wartosci
napiecia na wejsciu. W przypadku przetwornikow C/A, wzgledem napiecia odniesienia
produkowane sg wartosci wyjsciowe. W obu przypadkach oznacza to, ze napiecie odnie-
sienia jest maksymalnym napigciem jakie przetwornik moze zmierzy¢ lub wygenerowaé i
jednoczesnie odpowiada najwyzszemu kodowi bitowemu.

Bardzo czesto napiecie odniesienia jest dobrane jako iloczyn o postaci
Upeg =2"-100" V

gdzie n,m € N. Ma to na celu uproszczenie przeliczania z systemu dwéjkowego na dzie-

siectny. Przyklad: n = 12 i m = —3, wigc U,y = 4.096 V. Dla przetwornika 12-bitowego

9

Dawid Najda

istnieje 4096 mozliwych stanoéw, dlatego w idealnym urzadzeniu osiggamy rozdzielczo$é
1mV.

2.3.3 Budowa przetwornikéw analogowo-cyfrowych

Ze wzgledu na sposob dziatania wyrdznia sie trzy metody pracy: bezposrednia, posred-
nia, kompensacyjna. Istnieje kilka podstawowych typéw, ktore roznig sie zasadg dziatania
oraz osiggami. Stosujg one jedng z powyzszych metod. Dla kazdego z nich moga istnie¢

rozne modyfikacje, ktére poprawiaja w jakis sposob osiagi.

Przetwornik blyskawiczny

Przetwornik z rodzaju bezposrednich, nazywany takze btyskawicznym (ang. Flash).
Dziata na zasadzie bezposredniego i (najczesciej) jednoczesnego poréwnania wartosci na-
piecia wejsciowego z szeregiem napie¢ odniesienia reprezentujacych poszczegdlne poziomy
kwantowania za pomoca szeregu komparatoréw analogowych. Rezultatem tego poréwna-
nia jest kod jedynkowy (ang. unary) zwany tez termometrycznym (ang. thermometer code)
ze wzgledu na dziatanie analogiczne do termometru cieczowego — interesuje nas najwyzsza
osiggnieta pozycja, czyli ilos¢ pozytywnych wynikow poréwnan. Kod taki wprowadzany
jest na specjalny koder, ktéry wyprowadza wartosé cyfrowa (dwdjkowa) odpowiadajaca
sygnatowi wejsciowemu. Podstawows zaletg takich przetwornikow jest szybkosé¢ dziatania,
na ktoérg sktadajg sie wylacznie dwa czynniki: opdznienie na komparatorze analogowym
oraz opdznienie na koderze cyfrowym. Uzyskiwane czestotliwosci sa nawet do kilku rze-
dow wielkosci wigksze od pozostatych typow przetwornikow A/C. Niestety, ze wzgledu
na potrzebe zastosowania rownolegtego pomiaru dla kazdej mozliwej wartosci, liczba ele-
mentow podwaja sie z kazdym bitem. Zwiekszenie rozdzielczosci wymaga tez zwiekszenia
precyzyjnosci napie¢ odniesienia, uzyskiwanych zazwyczaj z dzielnika oporowego napiecia
odniesienia. Zwigkszenie ilosci komparatorow skutkuje dodatkowo zwigkszeniem pojem-
nosci wejsciowej, a wiec ograniczeniem pasma wejsciowego sygnatu, co jest sprzeczne z

gtéowna zaleta. Podsumowujac, najczesciej maja one nie wiecej niz 8 bitéw rozdzielczosci.

10

Rozdzial 2. Analiza tematu

STROBE

ANALOG
INPUT

o—AA———————
*VREF 4sR

PRIORITY DIGITAL

ENCODER ouTPUT
ANDLATCH [7#—

Rys. 2.4: Schemat przetwornika Flash [4]

Przetwornik sukcesywnej aproksymacji

Przetwornik z sukcesywna aproksymacja (ang. SAR — Successive Approximation Re-
gister) nalezy do rodziny kompensacyjnych. Poréwnuje on wartosci napiecia wejsciowego
z napieciem poréwnania wytworzonym za pomoca wewnetrznego przetwornika C/A w ite-
racyjnym procesie zarzadzanym przez uktad sterujgcy. Algorytm dziala na zasadzie wy-
szukiwania binarnego, tzn. polega na wtaczaniu kolejnych bitéw stowa, poczynajac od
najwyzszego bitu (MSB), az do osiagniecia ostatniego bitu (LSB). W przypadku kiedy
napiecie wejsciowe bedzie mniejsze od napiecia poroéwnania, to dany bit stowa jest rese-
towany; w przeciwnym razie pozostawiana jest wartos¢ ,,1”. Nastepnie wykonywana jest
kolejna iteracja algorytmu. Tak wytworzone stowo jest reprezentacja cyfrowa napiecia
wejsciowego. Ze wzgledu na iteracyjny charakter pracy przetwornika, jego czestotliwosé
probkowania jest zalezna od dtugosci stowa, szybkosci pracy przetwornika C/A, kompara-
tora i uktadu sterujacego. Mimo tego, sa one uwazane za najbardziej uniwersalne, bedac

srednimi zaréwno w predkosci jak i doktadnosci.

CONVERT
START
>
l TIMING
ANALOG -
INPUT COMPARATOR
l EOC,
© DRDY,
OR BUSY
jj —>| CONTROL
LOGIC:
SUCCESSIVE
APPROXIMATION
REGISTER
DAC |<<4 (SAR)
OUTPUT

Rys. 2.5: Schemat przetwornika SAR [4]

11

Dawid Najda

Przetwornik podwdjnie catkujacy

Metoda podwéjnego catkowania (ang. Dual Slope) jest jednym z najdokladniejszych
sposobéw na pomiar warto$ci analogowej. Nalezy ona do metod posrednich. W pierw-
szej czedci, do elementu catkujacego doprowadzone jest napiecie mierzone. Catkowanie
tego napiecia trwa ustalony czas (najczesciej 20 ms). W drugiej fazie do wejscia elementu
catkujacego dotaczone jest napiecie odniesienia o biegunowosci przeciwnej do wejscia. W
czasie roztadowywania, uktad zlicza impulsy zegara. Kiedy napiecie wyjsciowe z catko-
wacza osiggnie warto$¢ zero, uktad konczy zliczanie impulsow. Znajac czas tadowania,
czas roztadowania, oraz napiecie roztadowujace, z prostej proporcji wyliczane jest napie-
cie wejsciowe. Bardziej zaawansowane konstrukcje posiadaja napiecia odniesienia o obu
polaryzacjach lub nawet r6znych wartosciach (np. 10x) dla danej polaryzacji. Pozwala to
przyspieszy¢ roztadowywanie uktadu catkujacego. Ze wzgledu na uzycie ktadu catkuja-
cego, zegarow i innych elementow bazujacych na uptywie czasu, doktadnosé przetwornika

jest uzyskana kosztem czestotliwosci przetwarzania.

||
ANALOG I

inpuTr O—0 R ¢
in T~
“Vger O—0O
N
TIMER AND “
CONTROL
DIGITAL
OUTPUT

COUNTER
CK 7LO
oscC. R

» |
»

Rys. 2.6: Schemat przetwornika Dual Slope [4]

Przetwornik Sigma-Delta

Topologia ta jest jedna z najbardziej skomplikowanych [10]. Napiecie wejsciowe jest
podane na element catkujacy, ktorego wyjscie jest poréwnywane do jakiegos niezerowego
napiecia granicznego. Po przekroczeniu tego progu, zalgcza sie bramka, ktéra powoduje
pomniejszenie napiecia wejsSciowego o napiecie odniesienia. Zaktadajac, ze napiecie wej-
Sciowe zawsze bedzie mniejsze od odniesienia, powoduje to zmiane polaryzacji oraz po-
czatek roztadowywania catkowacza. Wyjscie bramki stanowi sygnat cyfrowy — ciag bitéw
bedacy modulacja gestosci impulséw (ang. PDM — Pulse-Density Modulation). Jest ona
koncepcyjnie zblizona do modulacji szerokoscia impulséw (ang. PWM — Pulse- Width Mod-
ulation), jednak nie ma stalego okresu. Nastepnie zlicza sie w ustalonym okresie czasu

ilos¢ bitéw w stanie wysokim. Ta ilos¢ w stosunku do ilosci wszystkich bitéw jest propor-

12

Rozdzial 2. Analiza tematu

cjonalna do stosunku napiecia wejéciowego do napiecia odniesienia. Z prostej proporcji
mozna wyznaczy¢ warto$¢ napiecia na wejsciu. Przetworniki tego typu, ze wzgledu na
element catkujacy usredniajacy wplyw zakldcen, oferuja nieosiggalna dla innych precy-

zje, przy zachowaniu wzglednie wysokich czestotliwosci. Niesie to jednak ze soba koszty

produkcji.
SAMPLING CLOCK DIGITAL
ANALOG + (Kefg) oo ' OUTPUT
INPUT ! DIGITAL |
> + | FILTER [/ ©
O (fs)
1-BIT
DAC

Rys. 2.7: Schemat przetwornika XA [4]. Symulacja

Przetwornik napiecia na czas

Metoda ,napiecie na czas” (ang. Ramp-Compare) polega na generowaniu napiecia pito-
ksztattnego o przebiegu 0+-U,..s lub £U,..s a nastepnie wprowadzeniu go razem z napieciem
mierzonym na wejscie komparatora. W ten sposéb otrzymujemy ciag bitow reprezentujacy
modulacje szerokoscig impulséw (ang. PWM — Pulse- Width Modulation). Wystarczy z po-
mocy szybkiego zegara zmierzy¢ jaka cze$é okresu sklada sie z bitéw w stanie wysokim lub
niskim, a nastepnie z prostej proporcji wyznaczy¢ napiecie wejsciowe. Do zalet tego typu
przetwornika nalezy bardzo nieskomplikowana konstrukcja; do wad za$ duza zalezno$é
od precyzji przebiegu pitoksztattnego, ktéry w najprostszym przypadku jest wytwarzany
przez prosty element catkujacy, na ktéry bardzo duzy wpltyw moze mie¢ np. temperatura.
Z tego powodu zamiast analogowego generatora, mozna zastosowac przetwornik C/A, kto-

rego napiecie wyjsciowe wzrasta wraz z przebiegiem zegara.

ANALOG |
INPUT

i |
i |
H '+ * ALTERNATE !

"""" e DAC s

B

DIGITAL

g
'
' COUNTER i OUuTPUT
* RAMP R CK ‘07LO
GENERATOR R

A

A

TIMER
AND
CONTROL

A

oscC.

Rys. 2.8: Schemat przetwornika Ramp-Compare [4]

13

https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0l3AWAnC1b0DZwCZoHYBWAgDgLgO0gTKPGJAIcgYFMBaARg4CgB3EDggQhsYbAKEDiwyNwDGE4R2kjsSlcxjxI6XeiixIHA3B79saqcIvWE9Wf0HWxA7PVHjZHDJpHF74BgBlALaYbIATq7uLsTMHlChsgBKIJxYYEFp3iAIkAHMebmJmtAE3ADmqtZx1SJIWJrc3sJE4m70PvH+AiAFJQO+AGYAhgA2AM4sUM1ZXX6dLh3gfYNrTakEPgySW8wEeI0ioSJlp4ylRtypnCGUzOnucInGxjIlZdwIHEggGHYLEB4DjtHrGYh8RLLeIA2RVJwif6KepHWQjOrYJFgKiI4S-C5JbQDDhhbjo+KxCniX4cRicRgksLEyFsLYiHLxDncABu2RCYnotypAyKbDA0Eyg0+VSFOEFIOYmV8aORancljVq1p2QZ4WJpNSYAo7IyxuU73EjPiZ1wBJg5UcGTcuQBApmtMY2OsWJBuN6XloYEOfrAKkxShm-CN7RyXpNkfAOOwsaTtQc4GNyYywazCejIZzSNkAElwDnYzm0wZGA7chqkUJ3EXIY2-IVXc6A4Vass2oDjJ4GC2ew069ZR+nW+GXe408Put3OY15-Gg1hcykBBksjk8v1Re9SuVaftjcgsH3qFgB4la3sdq1tueZqWCLt38Jn0eh-w361dtsf4JvM3wXmeXK-mezyXhBDDgWB4hXjMADKaRsrmsobokoyTNM8TcAA9gIEAuIUOj0MQ0A-D8qDEJkHKGEYUICHgMyhlIIAAGLGA8n7ZCAABqBFjAALiMFQsNwQA

Dawid Najda

Przetwornik napiecie-czestotliwosé

Metoda ,napiecie na czestotliwo$¢” (ang. Voltage-to-Frequency) wykorzystuje prze-
twornik napiecia na czestotliwo$é (VFC). Jest to oscylator, ktérego czestotliwosé jest li-
niowo proporcjonalna do napigcia sterujacego. Impulsy sa nastepnie zliczane w jakims$
okresie czasu i przeliczane na napiecie na podstawie charakterystyki F(U). Ten typ prze-
twornika jest monotoniczny, wolny od brakujacych kodow, catkuje szum i moze zuzywac
bardzo mato energii. Jest réwniez bardzo przydatny w zastosowaniach telemetrycznych,
poniewaz VFC, ktory jest maly, tani i zuzywa niewiele energii, mozna zamontowa¢ na
obiekcie do$wiadczalnym i komunikowa¢ sie z licznikiem za pomoca tacza telemetrycz-

nego.

OUTPUT

FLIP A
FLOP

ANALOG
INPUT

VREF
Vi

CONVERTER

Rys. 2.9: Schemat przetwornika Voltage-to-Frequency [4]

14

Rozdzial 2. Analiza tematu

2.3.4 Budowa przetwornikéw cyfrowo-analogowych

Istnieje kilka podstawowych typow, ktore réznia sie zasada dziatania oraz osiggami.

Czesto wykorzystuja one metody analogiczne do przetwornikéw A/C [4].

Przetwornik z modulatorem szerokosci impulséw

Przetwornik dziata dzieki szeroko znanej metodzie, polegajacej na zmianie wypetnienia
sygnatu — jest nig wspomniane wczesniej PWM. Modulacja szerokosci impulséw jest naj-
czesciej wykonywana poprzez przetaczanie tranzystoréw pomiedzy stanem przewodzenia
a stanem zaporowym. Kontrola takiego procesu jest tez bardzo prosta w implementac;ji,
sterownik musi tylko w odpowiednim momencie wlaczaé lub wyltgczaé elementy kluczu-
jace. W stanie zaporowym natezenie pradu jest zerowe, zas w stanie przewodzenia spadek
napiecia jest bardzo niewielki, dlatego straty praktycznie nie wystepuja. Przez prostote
realizacji oraz bardzo wysoka wydajnos¢, jest to metoda czesto stosowana do regulacji
nie tyle napigcia, co mocy. Ze wzgledu na prace przerywana, najlepiej dziata w pota-
czeniu z odbiornikami ktére z natury sa inercyjne: silniki, wentylatory, pompy (moment
bezwtadnosci), zaréwki, grzatki (bezwladnos$é cieplna), zasilacze impulsowe (prad w dta-
wiku). Przy wystarczajaco wysokiej czestotliwosci przetaczania, moze jednak obstugiwaé
sterowanie mocg w uktadach uznawanych za statyczne, np. oswietlenie LEDowe. W za-
stosowaniach bardziej ,typowych” dla C/A — czyli wytwarzanie precyzyjnego napiecia —
oprocz wysokiej czestotliwosci przetaczania wymagane sa analogowe filtry dolnoprzepu-

stowe w celu wygltadzenia przebiegu.

PRECISION
REFERENCE

PWM

e RLoap

CMOS T

BUFFER — L

=

Rys. 2.10: Schemat przetwornika PWM

Przetwornik z modulatorem gestosci impulséw

Przetwornik tego typu bazuje na metodzie PDM (ang. Pulse-Density Modulation). Jest
on odpowiednikiem przetwornika A/C XA. Dzialtanie jest podobne do PWM, oferuje jednak
mniejsze zaktdcenia na wyjsciu w zamian za zwiekszenie czestotliwo$ci przetaczania, a

wiec ewentualnych strat mocy. Wynika to z tego, ze PWM ma staly okres i wszystkie bity

15

Dawid Najda

w stanie wysokim lub niskim sa w takim okresie zgrupowane razem.

Przetwornik wazony dwdjkowo

Przetwornik wazony binarnie (ang. binary-weighted) moze by¢ zbudowany na kilka
sposobéw. Maja one jednak wspdlng ceche — dla kazdego bitu stowa zawiera pewien zestaw
elementow, ktore sa dobrane tak, ze kazdy ma w wezle sumacyjnym dwa razy wieksza wage
od poprzedniego, zaczynajac od najnizszego bitu. Istnieje kilka wariantéw, réznigcych sie

implementacja:

1. Napiecie odniesienia podane jest na zestaw rezystoréw o podwajajacych sie warto-
Sciach (tak wiec prad maleje dwukrotnie). Kazdy z nich moze byé¢ dotaczony lub
nie do wspolnego punktu. Sumaryczny prad jest nastepnie zamieniany na napie-
cie. Opcjonalnie zamiast rezystoréw mozna zastosowaé¢ odpowiednio wyskalowane
zrodta pradowe.

2. Zamiast zroédet pradowych mozna wykorzysta¢ kondensatory. Po natadowaniu na-
pieciem odniesienia, wybrane z nich sg przetaczane do masy, co skutkuje pojemno-
sciowym dzielnikiem napigcia.

3. Jedno zrodito pradowe zasila zespot opornikéw potaczony szeregowo, przy czym
kazdy moze by¢ indywidualnie zwarty — suma spadkow napieé¢ daje bezposrednio
wyjscie.

4. Zamiast rezystoréw o wartosciach podwajajacych si¢, wykorzystano tzw. drabinke
R-2R. Ze wzgledu na szczegdlng strukture, prad ptynacy do kazdej kolejnej odnogi
staje sie dwukrotnie mniejszy. Zaleznie od utozenia, otrzymujemy wyjscie napieciowe
na zasadzie dzielnika oporowego, lub po zsumowaniu odpowiednich odnég, wyjscie

pradowe, zamieniane na napiecie.

Jest to jedna z najszybszych metod konwersji, jednak wada jest niska dokladnosé¢ ze
wzgledu na trudno$é¢ w wyprodukowaniu komponentéw o precyzyjnych wartosciach. Wa-
riant drabinkowy cze$ciowo pozwala zapobiec temu problemowi. Oporniki o tym samym
rzedzie wielko$ci sa duzo tatwiejsze do doktadnego wyprodukowania, a potrzeba ich jedy-
nie dwa razy wiecej niz w podstawowej topologii. Wersja z kondensatorami jest uzywana w
przetwornikach A/C SAR, gdzie szybkie roztadowanie nie jest problemem, oraz ze wzgledu
na brak potrzeby dodatkowych uktadéw sample and hold. Dodatkowo, na jednym uktadzie

wykonuje si¢ i konwersje A/C i C/A, co znacznie upraszcza strukture.

16

Rozdzial 2. Analiza tematu

112 /4 1/8

MSB LSB ANALOG
OUTPUT

o
—0
*0
—¥
+

— W

Rys. 2.11: Schemat przetwornika wazonego dwéjkowo, rezystorowy [4]

0
BIT1 BIT2 BIT3 S¢
(MSB) (LSB)
CroraL = 2C J‘ c L c/2 L cl4 L c/4 f

o I"i 1°$ Ti I s

VREF

Rys. 2.12: Schemat przetwornika wazonego dwéjkowo, kondensatorowy [4]

o—|
DIGITAL
INPUTS
O RELAY
LATCHES
o—|
o—|

Rys. 2.13: Schemat przetwornika wazonego dwéjkowo, napieciowy [4]

17

Dawid Najda

LSB MSB

= L 11 7

Rys. 2.14: Schemat przetwornika wazonego dwdjkowo, drabinka R-2R [4]

Przetwornik cykliczny

Przetwornik cykliczny, zwany tez przetwornikiem sukcesywnej aproksymacji, jest od-
powiednikiem przetwornika A/C SAR. Nazwa bierze si¢ ze wzgledu na to, ze bity podawane
sg pojedynczo, a wiec posiada on jeden element kluczujgcy. Zaleznie czy bity podawane
sg od najnizszego czy najwyzszego, wymagane sg lekkie zmiany, natomiast zasada dziata-
nia jest ta sama. Przetwornik dziala na zasadzie petli dodatniego sprzezenia zwrotnego.
Zaleznie od wartosci bitu, jedno z wej$¢ sumatora jest podtaczane do napiecia odniesienia
lub masy, przepuszczane przez odpowiednie wzmocnienie, wraca do drugiego wejscia su-
matora i proces powtarza sie, dodajac napiecie ustawione przez kolejny bit. W przypadku
kolejnosci LSB— MSB, wzmocnienie powinno wynosi¢ 0.5; w przeciwnym przypadku, jest
ono réowne 2 [4]. Jak tatwo sie domysli¢, w praktyce rozpoczecie od najnizszego bitu be-
dzie dawa¢ bardziej doktadne rezultaty, ze wzgledu na to, ze najbardziej znaczacy bit
nie bedzie wielokrotnie przechodzit przez petle, przy okazji akumulujac btad. Mnozenie
napiecia odniesienia przez 0.5 i dodawanie gwarantuje tez, ze wynik zawsze znajdzie si¢
w przedziale 0 <+ U,.¢. Mnozenie przez 2 wymaga albo p6zZniejszego przeskalowania, albo

odpowiedniego pomniejszenia napiecia odniesienia (co znéw powoduje niedoktadnosci).

V
SAMPLE out

AND HOLD

Rys. 2.15: Schemat przetwornika cyklicznego [4]

18

Rozdzial 2. Analiza tematu

Przetwornik termometryczny

Przetwornik termometryczny jest odpowiednikiem przetwornika A/C Flash. Zawiera
on tyle zestawow elementow ile mozliwych wartosci. Moga to by¢ rezystory, zrédta napie-
ciowe lub zZrédta pradowe o tej samej wartosci. Wartos¢ binarna jest przeliczona na kod
unarny. W przypadku Zrédet napieciowych (np. oporowy dzielnik napiecia), wybierane
jest najwyzsze i odpowiada ono bezposrednio wyjsciu. W przypadku zrédet pradowych
(np. zbior réwnoleglych identycznych rezystoréw) powoduje wlaczenie doktadnie takie;
ilosci elementéw jaka jest podana w stowie, zas pdzniej prad zamieniany jest na napiecie.
Architektura tego typu jest szybka i najdoktadniejsza ze wszystkich. Niestety kosztem sg
duze wymogi pod wzgledem ilosci komponentéw, co ogranicza rozdzielczos¢ lub wymaga

procesu produkeji uktadéw scalonych wysokiej skali integracji (ang. high-density IC').

VREF
[€<—O
3-To-8 3-BIT
DECODER [€— DIGITAL
INPUT
g |
-
T0
SWITCHES ANALOG
ouTPUT

Rys. 2.16: Schemat przetwornika termometrycznego, napieciowy [4]

v
3-BIT ooF
DIGITAL |

INPUTI R 2R % R R

ANALOG
OUTPUT

mmrrrrrr?

SWITCHES

Rys. 2.17: Schemat przetwornika termometrycznego, pradowy [4]

Przetwornik hybrydowy

Przetworniki hybrydowe, jak nazwa wskazuje, taczg wczesniejsze metody w jednym

urzadzeniu. Wiekszos¢ obecnie produkowanych uktadéw jest wtasdnie tego typu, ze wzgledu

19

Dawid Najda

na laczenie pozadanych cech (niski koszt, wysoka czestotliwos¢, dobra precyzja). Jednym
z przyktadow jest przetwornik ,segmentowy”, ktory taczy metode termometryczng na
najwyzszych bitach, dla zwigkszonej precyzji, z metoda wazona dwdjkowo dla nizszych

bitéw, w celu zmniejszenia ilosci potrzebnych komponentéw.

2.4 Komunikacja z peryferiami

Czescig praktycznie kazdego bardziej skomplikowanego uktadu cyfrowego jest proce-
sor, ktory steruje praca catosci badz czesci uktadu. Procesor musi mie¢ mozliwo$é¢ komu-
nikacji z kazda istotniejsza czescig takiego uktadu.

Istnieja dwa podejscia do podtaczenia urzadzen do procesora:

o ciasna integracja: urzadzenie ma swoéj dedykowany interfejs i staje sie w pewnym
sensie czescia specyfikacji procesora (np. dedykowane instrukcje czy specjalne reje-

stry procesora do obstugi danego urzadzenia)

o luzna integracja: urzadzenie jest podlaczone do procesora przez standardowa szyne
(zazwyczaj wspétdzielona z innymi urzadzeniami) i jest widoczne dla procesora za
pomoca zwyktych instrukcji dostepu do pamieci — pewna czesé fizycznej przestrzeni
adresowej jest wydzielona dla urzadzenia i odpowiada ono na instrukcje procesora,
ktére pisza badz czytaja ten obszar; podejscie takie nazywa sie MMIO (memory-
mapped 1/0)

Ciasna integracja jest uzywana rzadko (najczesciej gdy projektujemy jednoczes$nie pro-
cesor i jego urzadzenia peryferyjne) i w przypadku procesoréw ogdlnego przeznaczenia
uzywa sie wylacznie luznej integracji.

Do podtaczania zewnetrznych modutéw najczesciej wykorzystywane sg ustandaryzo-
wane protokoly komunikacyjne, ktorych obstuga jest czesto zaimplementowana w proce-
sorach za pomoca wyzej wymienionych integracji. Kilka takich najpopularniejszych pro-

tokoléw jest wymienionych ponizej.

2.4.1 Uklad UART

Uniwersalny asynchroniczny nadajnik-odbiornik (ang. Universal Asynchronous Receiver-
Transmitter) to interfejs do asynchronicznej komunikacji szeregowej, w ktérym mozna
konfigurowa¢ format danych i predko$¢ transmisji. UART pobiera bajty danych i przesyta
poszczegolne bity w sposob sekwencyjny, od najmniej do najbardziej znaczacego, otoczone
bitami startu i stopu, dzieki czemu kanat komunikacyjny zapewnia precyzyjne taktowanie.
W miejscu docelowym drugi UART ponownie sktada bity w kompletne bajty. Kazdy UART
zawiera rejestr przesuwny, ktory jest podstawowsa metoda konwersji pomiedzy formami

szeregowymi i réwnolegtymi [30]. Transmisje informacji ztaczem szeregowym inicjuje bit

20

Rozdzial 2. Analiza tematu

startowy (logiczne zero). W dalszej kolejnosci przestana zostaje informacja w postaci 7, 8
lub 9 kolejnych bitéw (w zaleznosci od ustalonej konfiguracji urzadzenia). Za zakonczenie
transmisji odpowiedzialny jest bit stopu (logiczna jedynka). Calo$é tworzy tzw. ramke

UART, ktora zawiera w sobie kompletng przesytang informacje.

2.4.2 Magistrala I12C

I2C lub IIC (ang. Inter-Integrated Clircuit) to synchroniczna magistrala komunika-
cyjna, opracowana w 1982 roku przez firme Philips Semiconductors. Jest szeroko stoso-
wana do podigczania uktadow peryferyjnych o nizszej predkosci do procesoréw i mikro-
kontroleréw w komunikacji wewnatrzptytowej na mate odlegtosci. Jest to protokét typu
master-slave, co oznacza, ze jedno urzadzenie kontrolujace (master) komunikuje sie z
jednym lub wieloma urzadzeniami podrzednymi (slaves).

I12C do transmisji wykorzystuje dwie dwukierunkowe linie w topologii magistrali: SDA
— linia danych (ang. Serial DAta) i SCL — linia zegara (ang. Serial CLock). Obie linie
sa na stale podtaczone do zrédla zasilania poprzez rezystory podciggajace (ang. pull-
up). Wszystkie nadajniki sa typu otwarty kolektor lub otwarty dren, co powoduje, ze
logiczne zero jest dominujace. 12C uzywa logiki dodatniej, a wiec stan niski na magistrali
odpowiada ,,0” logicznemu, natomiast stan wysoki ,, 1”7 logicznej [35].

I2C jest magistrala zorientowang bajtowo, a wiec bity grupowane sa po 8. Dane sa
wysytane w kolejnosci od najbardziej znaczacego bitu do najmniej znaczacego. Po prze-
staniu 8 bitow w jednym kierunku, przesytany jest dodatkowy bit potwierdzenia odebrania
danych ACK (lub NACK w przypadku braku potwierdzenia) w kierunku przeciwnym.

Pierwszym bajtem jest zawsze nadawany przez urzadzenie master adres urzadzenia
slave, ktory oprocz 7 bitow wlasciwego adresu zawiera bit kierunku transmisji na najnizszej
pozycji. Warto$¢ ,,0” tego bitu oznacza transmisje od mastera do slave’a (zapis), podczas
gdy warto$¢ 1”7 kierunek przeciwny (odczyt). Po pierwszym bajcie przesytane zostaja,

dane.

2.4.3 Interfejs SPI

SPI (ang. Serial Peripheral Interface) — szeregowy interfejs urzadzeni peryferyjnych.
Jeden z najczesciej uzywanych interfejséw komunikacyjnych pomiedzy systemami mikro-
procesorowymi a uktadami peryferyjnymi.

Komunikacja poprzez SPI odbywa sie synchronicznie za pomocg 3 linii:

« MOSI (ang. master output slave input) — dane dla uktadu peryferyjnego,
o MISO (ang. master input slave output) — dane z ukladu peryferyjnego,
o SCLK (ang. serial clock) — sygnal zegarowy (taktujacy).

21

Dawid Najda

Do aktywacji wybranego uktadu peryferyjnego stuzy dodatkowo linia CS (ang. Chip
Select — wybér uktadu podrzednego) lub adresacja uktadéow. W drugim przypadku, w
przesytanej wiadomosci zawarty musi by¢ adres urzadzenia, ktére po jego rozpoznaniu
przyjmuje pozostate bajty. Adresowanie ukladéow wykorzystywane jest szczegdlnie pod-
czas pracy z rozbudowanymi systemami, ktérych poszczegdlne czesci mozna programowad
niezaleznie, takze po zamontowaniu na ptytce [6].

Aby rozpoczaé komunikacje, master najpierw wybiera urzadzenie podrzedne. Podczas
kazdego cyklu zegara SPI nastepuje transmisja pojedynczego bitu w trybie pelnego du-
pleksu. Master wysyta bit na linii MOSI, podczas gdy slave wysyta bit na linii MISO, a
nastepnie kazdy odczytuje odpowiadajacy im bit przychodzacy. Ta kolejnosé jest zacho-

wywana nawet wtedy, gdy zamierzony jest tylko jednokierunkowy transfer danych.

2.5 Polaczenie miedzy urzadzeniami

Do komunikacji pomiedzy samodzielnymi urzadzeniami, gléwnie ze wzgledu na ty-
powo duzo wigkszy dystans niz miedzy peryferiami, stosuje si¢ inne metody. Wymagaja
one adekwatnej mocy, szczegdlnie przy wyzszych predkosciach przesyhu, oraz odpowied-
nich zabezpieczen przed btedami zwigzanymi z mozliwymi zakléceniami. Kilka mozliwych

rozwigzan zostalo oméwionych ponizej, zaréwno przewodowych jak i zdalnych.

2.5.1 Lacze RS-232

RS-232 to standard szeregowej transmisji danych miedzy urzadzeniami elektronicz-
nymi. Opisuje sposob polaczenia urzadzen koncowych danych (np. komputer) oraz urza-
dzen komunikacji danych (np. modem). Okresla nazwy stykéw zlacza oraz przypisane im
sygnaly, a takze specyfikacje elektryczng obwoddéw wewnetrznych. Standard ten definiuje
normy wtyczek i przewodéw portow szeregowych typu COM.

RS-232 jest magistralg komunikacyjna przeznaczona do szeregowej transmisji danych.
Najbardziej popularna wersja tego standardu, RS-232C pozwala na transfer na odleglosé

nieprzekraczajaca 15 m z szybkoscig maksymalna 20 %.

2.5.2 Lacze RS-485

RS-485 sklada si¢ z réznicowego (symetrycznego) nadajnika, dwuprzewodowego toru
transmisyjnego i réznicowego odbiornika. Umozliwia podtaczenie wielu nadajnikéw i od-
biornikéw (maksymalnie do 32). Ograniczenie wynika z ograniczeii energetycznych na-
dajnika. Najczesciej stosowang topologia dla takich standardéw jest topologia magistrali.
Zasigg to okoto 1200 m. Predkosci transmisji jakie mozna uzyskaé¢ to 35 MTbit (do 10m),

i 100% (do 1200 m). RS-485 jest najczesciej stosowanym interfejsem przewodowym w

22

Rozdzial 2. Analiza tematu

sieciach przemystowych — z prostego powodu, poniewaz przesyl roznicowy zapobiega wply-
wowi zaktocen zewnetrznych na transmisje danych. Na bazie tego interfejsu opracowano

wiele protokotéw komunikacyjnych.

2.5.3 Magistrala USB

USB, uniwersalna magistrala szeregowa (ang. Universal Serial Bus) -— komputerowe
ztacze komunikacyjne (tak zwany port lub interfejs) zastepujace stare porty szeregowe i
porty réwnolegte.

Jedna z wazniejszych cech portu USB jest zgodno$¢ ze standardem Plug and Play.
Architektura USB sktada sie z serwera (hosta), wielu portéw USB oraz urzadzen do nich
podtaczonych. Host USB moze zarzadza¢ wieloma kontrolerami, a kazdy kontroler moze
udostepniac¢ jeden lub wiecej portéw USB. Urzadzenia mozna z soba taczy¢, tworzac sieé¢
o topologii drzewa wykorzystujac do tego koncentratory USB [33].

Wspotczednie podstawowy wariant oferuje przepustowosé rzedu 480 MTbit. Transmisja
danych przez port odbywa si¢ w trybie half dupler na jednej parze przewoddéw. Istnieja

nowsze, szybsze warianty, jednak nie wszystkie porty i nie wszystkie urzadzenia je wspie-

raja.

2.5.4 Standard Ethernet

Ethernet to rodzina technologii przewodowych sieci komputerowych, powszechnie sto-
sowanych do potaczen internetowych. Zostat on wprowadzony na rynek w 1980 roku;
od tego czasu zostal udoskonalony, aby obstugiwaé¢ wyzsze przepltywnosci, wigksza liczbe
weztow 1 wieksze odleglosci taczy, ale zachowuje znaczng kompatybilnosé¢ wsteczna.

Klasyczne sieci Ethernet maja cztery cechy wspdélne. Sa to: format ramki, parame-
try czasowe, podstawowe regulty obowigzujace przy ich projektowaniu, proces transmis;ji.
Standardem jest izolacja o wytrzymato$ci minimum 250V AC miedzy kablem a kom-
puterem. Kabel jest z zalozenia odizolowany galwanicznie; to znaczy moduty stuzace do
obstugi Ethernetu posiadajg zintegrowane swego rodzaju mini transformatory na kazdej
parze zyt. Przez to mozna taczy¢ uktady o réznicy potencjatéw nawet rzedu kilku kV.

Stacje Ethernet komunikuja sie, wysylajac sobie nawzajem pakiety danych: bloki da-
nych indywidualnie wysylane i dostarczane. Adaptery sa dostarczane z zaprogramowa-
nym globalnie unikalnym 48-bitowym adresem MAC, dzieki czemu kazda stacja Ethernet
ma unikalny adres. Adresy te stuza do okreslenia zaréwno miejsca docelowego, jak i Zré-
dla kazdego pakietu danych. Ethernet ustanawia polaczenia (link-layer), ktére mozna
zdefiniowa¢ przy uzyciu adresu docelowego oraz zrédtowego. Po odebraniu transmisji od-
biornik na podstawie adresu docelowego okresla, czy transmisja ma znaczenie dla stacji,
czy tez powinna zostaé zignorowana. Interfejs sieciowy zwykle nie akceptuje pakietéw

adresowanych do innych stacji Ethernet.

23

Dawid Najda

Warstwa fizyczna Ethernet ewoluowata przez znaczny okres czasu i obejmuje fizyczne
interfejsy koncentryczne, skretkowe i $wiattowodowe o predkosciach od 1 @ do 400 %.

Najczesciej stosowane formy to 10BASE-T, 100BASE-TX i 1000BASE-T. Wszystkie trzy
wykorzystuja skretke komputerows i ztacza modutowe 8P8C. Dziataja odpowiednio z szyb-
kocig 10 MMt 100 MDIt j 1 Sbit.

Datagram nazywany jest pakietem lub ramka. Pakiet stuzy do opisu catej jednostki
transmisyjnej i zawiera nagtéwek, ogranicznik poczatkowy ramki (ang. SFD - start
frame delimiter) i przedituzenie nosnika (ang. carrier extension) -— dopelnienie za
ramka do 512 B. Ramka rozpoczyna si¢ nagtowkiem ramki zawierajacym zrédtowy i doce-
lowy adres MAC. Srodkowa czeé¢ ramki sktada sie z danych uzytkowych, w tym wszelkich
nagtéwkéw innych protokotéw (na przykltad protokotu internetowego) znajdujacych sie w
ramce. Ramka konczy sie 32-bitowym cyklicznym kodem nadmiarowym, ktory stuzy do

wykrywania uszkodzen przesytanych danych.

2.5.5 Standard Wi-Fi

Wi-Fi to rodzina protokoléw sieci bezprzewodowych, ktére sa powszechnie uzywane w
sieciach lokalnych urzadzen i dostepie do Internetu, umozliwiajac wymiane danych pobli-
skich urzadzen cyfrowych za pomocsg fal radiowych. Wi-Fi jest zaprojektowane tak, aby
bezproblemowo wspotpracowaé ze swoim przewodowym odpowiednikiem, Ethernetem.

Pasma radiowe Wi-Fi najlepiej sprawdzaja sic w przypadku korzystania ,,w zasiegu
wzroku”. Wiele typowych przeszkod, takich jak $ciany, filary, urzadzenia gospodarstwa
domowego itp., moze znacznie zmniejszy¢ zasieg, ale pomaga to rowniez zminimalizowaé
zaktocenia miedzy roznymi sieciami w zattoczonym otoczeniu. Zasieg wynosi od okoto
20 m do nawet 150 m. Oferuje predkos¢ przesytu do 100 @, lecz przy wigkszych dystan-
sach, predkos¢ przesytu zazwyczaj spada.

Standard zapewnia kilka réznych zakresow czestotliwosci radiowych do uzytku w ko-
munikacji Wi-Fi: pasma 900 MHz, 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz i 60 GHz.
Najczesciej uzywane sg 2.4 GHz i 5 GHz.

Dane sg zorganizowane w ramki, ktore sa bardzo podobne do ramek Ethernet w war-
stwie tgcza danych, ale z dodatkowymi polami adresowymi. Adresy MAC sg uzywane jako

adresy sieciowe do kierowania w sieci LAN.

2.5.6 Standard Bluetooth

Bluetooth to standard technologii bezprzewodowej krotkiego zasiggu, uzywany do wy-
miany danych miedzy urzadzeniami stacjonarnymi i mobilnymi na male odlegtosci oraz
do budowania sieci osobistych (PAN). Korzysta z fal radiowych w pasmie czestotliwosci

2.4 GHz i oferuje zasigg przewaznie do 10 m oraz predkosé przesytu do okoto 50 @.

24

Rozdzial 2. Analiza tematu

2.6 Wybér sposobu komunikacji

Kazdy sposob potaczenia urzadzenia z komputerem narzuca tez jaki$ specyficzny for-
mat komunikacji czy wiadomosci. Jedli zostanie uzyty protokét internetowy (czy w postaci
Ethernetu czy Wi-Fi), nalezy rozwazy¢ sposéb przesylania wiadomosci i danych miedzy
budowanym urzadzeniem a urzadzeniem zarzadzajacym. Kilka mozliwych rozwiazan jest

przedstawionych ponizej.

2.6.1 Gniazda (sockets)

Gniazdo sieciowe to struktura oprogramowania, ktéra stuzy jako punkt koncowy do
wysytania i odbierania danych w sieci. Ze wzgledu na standaryzacje protokotéw TCP/IP w
rozwoju Internetu, termin gniazdo sieciowe jest najczesciej uzywany w kontekscie zestawu
protokotéw internetowych i dlatego czesto nazywany jest takze gniazdem internetowym.
W tym kontekscie gniazdo jest zewnetrznie identyfikowane przez inne hosty na podstawie
adresu gniazda, ktéry jest triada protokohu transportowego, adresu IP i numeru portu.

Interfejs programowania aplikacji dla stosu protokotéw sieciowych tworzy tzw. ,,uchwyt”
(ang. handle) dla kazdego gniazda utworzonego przez aplikacje, powszechnie nazywany
deskryptorem gniazda. W systemach operacyjnych typu Unix ten deskryptor jest rodza-
jem deskryptora pliku. Jest on przechowywany przez proces aplikacji i uzywany przy
kazdej operacji odczytu i zapisu w kanale komunikacyjnym.

W momencie tworzenia za pomoca API gniazdo sieciowe jest powiazane z kombinacja
typu protokotu sieciowego, ktory bedzie uzywany do transmisji, adresu sieciowego hosta i
numeru portu. Porty shuza jako adresowalny zewnetrznie (z sieci) komponent lokalizacji,
dzigki czemu inne hosty moga nawiazywac¢ potaczenia.

Aplikacja moze komunikowac sie ze zdalnym procesem poprzez wymiane danych pro-
tokotem TCP/IP, znajac kombinacje¢ typu protokotu, adresu IP i numeru portu. Ta kom-
binacja jest czesto nazywana adresem gniazda. Jest to skierowany w strone sieci uchwyt
dostepu do gniazda sieciowego. Zdalny proces ustanawia gniazdo sieciowe we wtasnej in-
stancji stosu protokotéw i wykorzystuje interfejs API sieci do lgczenia sie z aplikacja,
przedstawiajac wlasny adres gniazda do wykorzystania przez aplikacje.

Interfejs, ktorego programy uzywaja do komunikacji ze stosem protokoléw przy uzyciu
gniazd sieciowych, nazywany jest socket API. Tworzenie programéw uzytkowych korzy-
stajacych z tego interfejsu nazywa si¢ programowaniem gniazdowym lub programowaniem
sieciowym. Interfejsy API gniazd internetowych sa zwykle oparte na standardzie gniazd
Berkeley. W standardzie gniazd Berkeley gniazda sg forma deskryptora pliku, ze wzgledu
na filozofie Uniksa, ze "wszystko jest plikiem”.

Gniazdo strumieniowe zapewnia niezawodny, sekwencyjny i unikalny przepltyw bez-
btednych danych bez granic rekordéw, z dobrze zdefiniowanymi mechanizmami tworzenia

i niszczenia polaczen oraz raportowania btedow. W Internecie gniazda strumieniowe sg

25

Dawid Najda

zwykle implementowane przy uzyciu protokotu TCP, dzicki czemu aplikacje moga dziataé
w dowolnej sieci przy uzyciu protokotu TCP/IP.

Programowanie bezposrednio na gniazdach oferuje praktycznie nieograniczone moz-
liwosci, natomiast jednoczesnie niskopoziomowo$é jest wada, ze wzgledu na konieczno$é
samodzielnej obstugi bardzo wielu probleméw. Po stronie klienta: najpierw trzeba otwo-
rzy¢ gniazdo (i pamieta¢ o zamknieciu przed wyjsciem z programu). Nastepnie potaczy¢
sie z serwerem, uzywajac odpowiedniej struktury przechowujacej adres. Po tym mozemy
wysyltac¢ i odbiera¢ dane. Po stronie serwera: najpierw trzeba zarejestrowaé ustuge w sys-
temie oraz przejs¢ w tryb nastuchiwania. Nastepnie trwa oczekiwanie na potaczenie, ktore
finalnie zostaje odebrane. Tworzy to nowe gniazdo, przez ktore mozna wysytac i odbieraé
dane (oczywiscie tu réwniez nalezy je p6zniej zamknad). Obstuga dzialania, sprawdzanie
poprawnosci, btedéw (errno), szykowanie struktur danych, wszystko wymaga od pro-
gramisty uzycia sporej liczby funkeji [32]. Niektére kody oznaczaja btad nieodwracalny,
niektére mozna obejs¢, zas jeszcze inne sa wrecz oczekiwane w pewnych sytuacjach. Rézne
ustawienia powodujg pojawianie si¢ nowych kodow btedéw lub zmiane zachowan juz ist-
niejacych. Dodatkowo, catkowicie po stronie uzytkownika lezy wybodr i implementacja
metody sprawdzenia, czy dane wystane i otrzymane zostaly cale, czy jeszcze nie, czy
moze nigdy juz nie dotra; dobor limitow czasowych i wiele, wiele innych.

7 wymienionych przyczyn, bardzo pozadany jest wyzszy poziom abstrakcji, ktory po-
zwoli na zachowanie funkcjonalnosci przy jednoczesnym ukryciu wszystkich tych niepo-

zadanych, zaréwno przez programiste jak i uzytkownika, cech i wymogdw.

2.6.2 WebSocket

WebSocket jest protokotem komunikacyjnym, zapewniajacym dwukierunkowy kanat
wymiany danych poprzez jedno potaczenie TCP. Zaréwno WebSocket jak i HTTP sa zloka-
lizowane na 7 warstwie w modelu 0SI i zaleza od TCP na warstwie 4. Pomimo faktu, ze
sg one rézne, WebSocket zostal zaprojektowany do dziatania na portach przypisanych do
HTTP. Aby osiagnaé¢ kompatybilnos¢ z HTTP, handshake WebSocket’'u wykorzystuje naglto-
wek HTTP Upgrade, aby przetaczy¢ komunikacje.

Protokdt WebSocket umozliwia interakcje miedzy przegladarka internetowa (lub in-
nym klientem), a serwerem sieciowym przy nizszym obciazeniu niz alternatywne rozwia-
zania pol-dupleksowe, takie jak np. odpytywanie HTTP (ang. polling), ulatwiajac przy
tym znacznie przesytanie danych w czasie rzeczywistym do i z serwera. Jest to mozliwe
dzieki zapewnieniu znormalizowanego sposobu wysytania przez serwer tresci do klienta
bez uprzedniego zadania klienta i umozliwienia przesytania komunikatéw tam i z powro-
tem przy zachowaniu aktywnego potaczenia. W ten sposob miedzy klientem, a serwerem
moze odbywacé si¢ dwukierunkowa wymiana danych [36].

Niestety wymaga jednoczes$nie zwyktego serwera HTTP [11], dodatkowo pozostaje pro-

26

Rozdzial 2. Analiza tematu

blem obstugi wielu rownoleglych potaczen do ograniczonego sprzetu.

2.6.3 Serwer HTTP

Po doktadniejszym przeanalizowaniu problemu, stato sie jasne, iz potaczenie w petni
dwukierunkowe, oferowane przez WebSocket, jest zbedne. Wystarczajacy jest prosty ser-
wer HTTP [37].

Serwer WWW to oprogramowanie komputerowe (i sprzet na ktérym ono pracuje), ktéry
przetwarza zadania za posrednictwem protokotu HTTP (protokédt sieciowy stworzony do
dystrybucji tresci internetowych) lub jego bezpiecznego wariantu HTTPS. Klient uzyt-
kownika — zwykle przegladarka internetowa — inicjuje komunikacje, wysytajac zadanie
dotyczace strony internetowej lub innego zasobu za pomoca protokotu HTTP, a serwer
odpowiada trescig tego zasobu lub komunikatem o btedzie. Serwer WWW moze rowniez
akceptowac i przechowywaé zasoby wysytane od klienta uzytkownika, jesli jest do tego
skonfigurowany.

Program serwera WWW zwykle wykonuje kilka zadan: odczytuje i stosuje ustawienia
znajdujace sie w konfiguracji; rozpoczyna nashuchiwanie potaczen/zadan klientéw; zarza-
dza potaczeniami klientow; odbiera zadania: czyta i weryfikuje zadania HTTP, wykonuje
ttumaczenie $ciezki URL wraz z réznymi kontrolami bezpieczenstwa, identyfikuje znane
nagltéwki i odezytuje ich wartosci; wykonuje lub odrzuca zadang metode HTTP: zarzadza
komunikacja z programami zewnetrznymi/modutami wewnetrznymi stuzacymi do genero-
wania tresci dynamicznych, sprawdzajac dostepnosc, rozpoczecie i ostatecznie zatrzymanie
wykonywania; odpowiada na zadania klientow wysylajac odpowiednie wiadomosci HTTP
(np. zadane zasoby lub komunikaty o btedach); opcjonalnie zapisuje komunikaty procesu
o wykrytych anomaliach lub innych znaczacych zdarzeniach (np. w zadaniach klientéw
lub w jego wewnetrznym funkcjonowaniu) [3).

Serwery obstuguja kilka réznych tzw. metod: GET, POST, PUT, HEAD, DELETE, PATCH,
OPTIONS, CONNECT, TRACE. Najpopularniejsze sg jednak GET i POST, szczegdlnie w przegla-
darkach internetowych.

Metoda zadania GET pobiera informacje z serwera. W ramach zadania do adresu URL
mozna dodaé query string, czyli jakie§ dane w postaci par {nazwa, warto$¢}. Ich dtugos$cé
jest jednak ograniczona (maksymalna URL dlugos$é 2048 znakéw) i musza by¢ w specjalny
spos6b (application/x-www-form-urlencoded) kodowane i dekodowane.

7. zalozenia metoda POST zada, aby serwer WWW zaakceptowal dane zawarte w tre-
Sci zadania, w celu ich przetworzenia lub przechowania. Jest czesto uzywany podczas
przesytania pliku lub wypelnionego formularza. W ramach zgdania POST w tresci zada-
nia mozna wysta¢ do serwera wzglednie dowolng ilos¢ danych, o typie albo zgodnym
z danymi metody powyzej, lub dowolnymi danymi binarnymi, za pomoca kodowania

multipart/form-data. Pole nagtéwka w zadaniu zwykle wskazuje typ kodowania tre-

27

Dawid Najda

$ci wiadomosci.

2.7 Koncepcja pracy

Koncepcja urzadzenia przedstawiona jest na schemacie 2.18 — ogdlny diagram poka-
zujacy komponenty i potaczenia miedzy nimi.

Budowane urzadzenie jest wyposazone w cztery wejscia analogowe: trzy napieciowe i
jedno pradowe, oraz dwa wyjscia analogowe: jedno napieciowe i jedno pradowe. Oprocz
tego, dostepne sa rowniez cztery wejdcia i cztery wyjscia cyfrowe. Wszystkie porty ana-
logowe obstuguja zaréwno dodatnie jak i ujemne wartosci sygnatéw. Wejscia cyfrowe
dziataja z napieciem dodatnim 3.3V - 24V oraz sa zabezpieczone przeciwko napieciom
ujemnym. Wyjscia cyfrowe dziataja z napieciem do 50V oraz sg zabezpieczone przeciwko
napieciom ujemnym i zbyt wysokim pradom. Wszystkie porty powinny méc dziata¢ (mie-
rzy¢, generowac) z czestotliwoscia przynajmniej 50 kHz. Calos¢ zarzadzana jest poprzez
mikrokontroler ESP32, z ktérym mozna si¢ komunikowaé¢ za pomoca komputera PC. Do
operacji analogowych zostana wykorzystane zewnetrzne chipy, ktére sa podtaczone do
mikrokontrolera. Porty analogowe wyposazone sg w ztacza BNC, zas$ porty cyfrowe w roz-
taczalne listwy zaciskowe. Wejscia analogowe maja do wyboru trzy mozliwe przedziaty.
Do pomiaréw wykorzystany jest przetwornik typu SAR ze wzgledu na ich uniwersalnosé,
tzn. przecigtne zarowno czestotliwosé i rozdzielczosé, oraz wzgledna prostote konstrukeji.
Do wytwarzania napiecia wykorzystano przetwornik typu resistive string, czyli termo-
metryczny, ze wzgledu na bardzo szybkie dziatanie, niska nieliniowos$¢ rézniczkowa oraz

gwarantowana monotoniczno$c.

——we. An. 14>{ Tor we. napigciowy }—»

—m.m.z—»{ Tor we. napieciowy }—» Przetwornik
—We.An.SA){ Tor we. napieciowy }—b AIC

—We.An.AiA){ Tor we. prgdowy }—b

Y

Mikrokontroler

<—wy.An.1—{ Tor wy. napieciowy }(* Przetwornik
<—wy_An.z—{ Tor wy. pradowy }(* CIA

—We. Cy. x44>{ Tor we. cyfrowy x4 I

Y

<«—wy. cy. x4—{ Tor wy. cyfrowy x4 |=

Rys. 2.18: Ogdélny diagram urzadzenia

28

Rozdzial 2. Analiza tematu

2.7.1 Zadawanie zadan urzadzeniu

Poniewaz jedyne bezposrednie sterowanie urzadzeniem jest mozliwe poprzez tworzenie
i wgrywanie kodu w jezyku C++ — co wymaga jego dobrej znajomosci oraz znajomoSci
samego sprzetu; odpowiedniego komputera, oprogramowania, kompilatora, srodowiska,
bibliotek i potaczenia fizycznego; jest czasochtonne i podatne na btedy — musiata zostaé
stworzona inna metoda sterowania urzadzeniem, w celu wykonywania pozadanych pomia-
row, ustawiania wyjs¢, itd.

Rozwigzaniem moze by¢ stworzenie witasnego, prostego jezyka, zawierajacego pole-
cenia shuzace do sterowania podzespotami urzadzenia, oraz opcjonalnie rézne instrukcje
pomocnicze, shuzace do zmiany przeptywu sterowania, takie jak: skok, warunek, petla.
Oczywiscie wymaga to rowniez stworzenia interpretera, ktory bedzie odczytywal instruk-

cje 1 wykonywat odpowiedni kod maszynowy obstugujacy urzadzenie [28].

Format binarny

Mozna zatozyé, ze kazde wyrazenie zajmuje pewng staly liczbe bajtow, tzn. jakis
rozmiar operacji (np. 1 bajt), jaki§ rozmiar argumentu (np. 4 bajty) itd. Zadanie takie
moze potem by¢ wykonane bezposrednio w czasie odczytu, poniewaz instrukcje sa juz
w formacie tatwo zrozumiatym dla procesora. Napisanie go jest jednak niewygodne bez
dedykowanego kompilatora, szczegdlnie w jezykach wysokopoziomowych, np. ze wzgledu
na typowanie stabe, wymog réznych operacji bitowych czy odpowiedniej koncowkowosci
— kolejnosci bajtow w stowach. Ten format jest jednakze uzyteczny jako reprezentacja w

pamieci.

Format tekstowy

Drugim sposobem jest zapis instrukcji i argumentow w postaci zwyktych ciagéow zna-
kéw. Instrukcje najlepiej kilkuliterowe (opcode, mnemoniki, akronimy) oraz argumenty
(gtéwnie liczby) przekazywane w zapisie dziesietnym (ewentualnie szesnastkowym lub
dsemkowym). Format ten jest bardzo prosty do pisania zaréwno recznego jak i bardziej
zautomatyzowanego. Wymaga jednak parsera, ktéry zamieni postaé tekstowg na repre-

zentacje w pamieci (drzewo sktadniowe, abstract syntax tree, AST) [28].

29

Dawid Najda

30

Rozdziat 3

Konstrukcja budowanego urzadzenia

3.1 Uzyte podzespoly

3.1.1 Mikrokontroler

Uktad jest budowany w oparciu o mikrokontroler ESP32, ze wzgledu na jego stosunkowo
niski koszt, szeroki wachlarz mozliwosci (32-bitowy 2-rdzeniowy procesor; 4 MiB pamieci
Flash i 520 KiB pamieci RAM; liczne GPIO; protokoly oraz peryferia: UART, I2C, SPI, I2S;
wsparcie Wi-Fi i Bluetooth), oraz niskie zuzycie energii (ok. 0.5 W). Na rysunku
przedstawiono jedna z wielu dostepnych ptytek ewaluacyjnych. Oprécz samego modutu
ESP32, posiada ona wbudowany regulator napigcia, port USB oraz konwerter USB-UART.
Pod metalowa pokrywa modutu kryja sie m.in. wtasciwy procesor, pamie¢ Flash, oscylator
kwarcowy oraz wyprowadzona jest antena. Na rysunku |3.2] pokazany jest uproszczony
schemat blokowy mikrokontrolera: zawarte moduly, peryferia, obstugiwane protokoty i

inne.

(RN aE®
SESESEEREERERE-

Rys. 3.1: Ptytka ewaluacyjna z chipem ESP-WROOM-32

31

Dawid Najda

In-Package
_Flash or| PSRAM Blu;?;?(oth Blustooth RF
receive
SPI controller Resse D —
y Clock § s
12C generator (/;} g
12S i Wi-Fi RF
WIFIMAG baseband transmit | T
SDIO —_—
UART
Cryptographic hardware
TWAI® G ey acceleration
ETH 2 (or 1) x Xtensa® 32-
bit LX6 Microprocessors SHA RSA
RMT —
PWM ROM SRAM AES RNG
—_— Ne— Ne—
Touch sensor
RTC
DAC
N —
ADC PMU uLp Recovery
coprocessor memory

Timers

Rys. 3.2: Funkcyjny diagram blokowy procesora

3.1.2 Przetworniki A/C i C/A

W pracy zostal wykorzystany przetwornik analogowo-cyfrowy MCP3204 firmy Micro-
chip |21]. Posiada on 4 wejscia analogowe, ktére moga by¢ uzywane niezaleznie, lub jako
wejscia réznicowe parami. Umozliwia probkowanie z czestotliwoscia do 100 ksps oraz roz-
dzielczoscia 12 bitow. Zuzywa bardzo mato energii, tj. w czasie pracy przy napieciu 5V
pobiera mniej niz 1 mA. Komunikuje sie z mikroprocesorem za pomoca szybkiego pro-
tokohu szeregowego — SPI. Uklad jest wyposazony w wejécie napiecia odniesienia, ktore

mozna prawie dowolnie wybrac.

Vpp Vss
VREF L J
e il
CHO |
CH1 Input
— | |Channel - |
- Mux
CH7* o] |
| L Comparator |
| Samoie 12-Bit SAR | |
and
| Hold |
| i sh] |
] i
o Control Logic " Register |
S S EEy=r

CS/SHDNDyy CLK Dgyr

* Note: Channels 5-7 available on MCP3208 Only

Rys. 3.3: Schemat blokowy przetwornika MCP3204 [21]

Do konwersji w druga strone, uzyty zostal przetwornik cyfrowo-analogowy MCP4922,

réwniez firmy Microchip. Posiada on 2 wyjscia analogowe. Umozliwia generacje z czesto-

32

Rozdziat 3. Konstrukcja budowanego urzadzenia

tliwoscig do 1 Msps oraz oferuje rowniez 12 bitéw precyzji. Uktad jest wyposazony w dwa

wejécia napiecia odniesienia, osobne dla kazdego z wyjsé [22].

LDAC Cs SDI SCK
[vV
Interface Logic Power-on DD
¢ i Reset
Input Input
Register A Register B Vss
4 v
DACx DACp
Register Register
Voee A String String %j_m Vier B
ReF A I '> > Dac, DACs
Buffer Buffer

v v

Gai_n »
Logic

Voute

Vouta SHDN

Rys. 3.4: Schemat blokowy przetwornika MCP4922 [22]

3.1.3 Wzmacniacze

Przetwornik A/C posiada wbudowane kondensatory przechowujace préobki. Wymaga
przez to wzmacniacza, ktory dostarczy potrzebny prad tadowania. W tym celu wyko-
rzystano uktad MCP6024 firmy Microchip, ze wzgledu na identyczne zasilanie jak sam
przetwornik oraz wysokie wzmocnienie Ay, ~ 120dB = 1 % oraz niskie napiecie nie-
zréwnowazenia (ang. input offset voltage) Vos < 2501V [23].

Jako wzmacniacz wejs¢ napieciowych umieszczony za dzielnikami, wykorzystany zo-
stal uktad LT1014DIN firmy Texas Instruments. Tak jak poprzednio wymieniony, ma on
wysokie wzmocnienie Ay, > 1@ oraz niskie napiecie niezrownowazenia Vpg < 250 nV
[19].

Do pomiaru pradu wymagany jest wzmacniacz pomiarowy (instrumentalny), najle-
piej z zewnetrznie regulowanym wzmocnieniem, w celu unikniecia przetaczania boczni-
kow. Zostat do tego wykorzystany uktad INA122P firmy Texas Instruments. Ma on ni-
skie napiecie niezréwnowazenia wejscia Vpg < 250 1V oraz niski prad polaryzacji wejscia

I, < 25nA. Wzmocnienie ustawia si¢ podlaczanym zewnetrznie rezystorem, zgodnie ze

33

Dawid Najda

wzorem G =5 + % [12].

W budowie wyj$¢ wykorzystano wzmacniacze LM2902N firmy Texas Instruments [18§],
ze wzgledu na ich dobry stosunek jakosci do ceny. W celu zwigkszenia mocy wyjsé¢, zasto-
sowano pary komplementarnych tranzystoréw bipolarnych BD139 i BD140.

Napiecia odniesienia: 2.048 V, 4.096 V, —2.048 V i —4.096 V zostaly wytworzone przy
pomocy uktadéw generujacych precyzyjne napiecie: LMA040A20 i LM4040A41 firmy Te-
xas Instruments |17]. Ich wyjscia sa buforowane za pomoca dwoch wzmacniaczy MCP607
firmy Microchip, wybranych ze wzgledu na wysokie wzmocnienie Ay, ~ 120dB = 1 %
oraz niskie napiecie niezréwnowazenia wejscia Vog < 250V [24]. Jeden wzmacniacz jest

zasilany napieciem 0-5V, za$ drugi — przeciwng polaryzacja.

3.1.4 Inne uklady

Jako bufor wejs¢ cyfrowych zostal wykorzystany uklad SN74HC125 firmy Texas In-
struments. Potrafi on przyja¢ az 20 mA na kazde wejscie w celu utrzymania wtasciwego
przedzialu napiecia wejsciowego, co w potaczeniu z odpowiednimi rezystorami pozwala na
znaczny przedzial wartosci napiecia réwnowaznego za stanem wysokim [31]. Do sterowania
wyjsciami cyfrowymi uzyto generycznej macierzy Darlingtonéw XD2003 firmy Xinluda, w
potaczeniu z rezystorami limitujacymi prad.

Do selekcji dzielnikéw wej$é napieciowych oraz wzmocnienia wejscia pradowego wy-
korzystano przekazniki V23100 V4005-A010 firmy TE Connectivity. Do sterowania prze-
kaznikami wykorzystano macierze Darlingtonéw ULN2803A firmy STMicroelectronics [34].
Aby podtaczyé ww. macierze do mikrokontrolera, uzyto ekspanderéw MCP23008 firmy

Microchip, ze wzgledu na komunikacje protokotem I2C oraz kompatybilne zasilanie [20)].

3.1.5 Schematy ideowe torow

Ponizej przedstawione s diagramy blokowe i schematy ideowe wszystkich toréw wej-
sciowych i wyjsciowych. Przy projektowaniu zostaly uwzglednione zalecenia producentéw
poszczegolnych uktadéw oraz ogdlnych , dobrych praktyk projektowania”, np. opisanych
w dokumentach firmy Analog Devices |13][14]. Pelny schemat ideowy urzadzenia umiesz-
czony jest w dodatku [B]

Tory cyfrowe wejsciowe

Tory cyfrowe sg bardzo proste w budowie oraz nie wymagaja zadnego posrednika,
tzn. sa bezposrednio potaczone do GPIO mikrokontrolera. Tor wejéciowy wykorzystuje
uktad buforujacy. Posiada on wbudowane zabezpieczenie przeciwko napieciu wejsciowemu

o wartosciach przekraczajacych napiecie zasilania.

34

Rozdziat 3. Konstrukcja budowanego urzadzenia

—Wejscie Cyfrowe—» Bufor ———Do GFIO——»

Rys. 3.5: Diagram blokowy toru cyfrowego wej$ciowego

=] |= +3.3 +33
EEENN| *:{
— 1] = | O | o Lo
YW AYY _ 15 =
Ml = b L = u [P = B
(@) O = O] i | 6
= A -4 RS53 — ©
a R —— o
G ~ 4
s Texas Instruments SN74HC125N T 3]
2 o R 1 @
— | |8ax8an B 03
—
[&4 r =
e L [Gl ol Bl K= = -

Rys. 3.6: Schemat ideowy toru cyfrowego wejsciowego

Tory cyfrowe wyjSciowe

Tor wyjsciowy to po prostu wzmocnienie sygnalu z mikrokontrolera za pomoca tran-

zystora bipolarnego w uktadzie Darlington.

Tranzystor

. F—Wyjscie Gyfrowe—»
Darlington

Rys. 3.7: Diagram blokowy toru cyfrowego wyj$ciowego

o Ul4 1
m ouUT 1 IN1 qq_CldﬁELO.
(1)) OUT 2 IN2 |5 I
)] OUT 3 IN3
()] OUT 4 IN4 r—9p —
()] OUT 5 IN5 [
) OUT 6 ING =—tp

OUT 7 IN7 g

COM GND

XD2003 ==

Rys. 3.8: Schemat ideowy toru cyfrowego wyjsciowego

35

Dawid Najda

Tory analogowe wejSciowe

Tory wejsciowe, zaréwno napieciowe (rysunek jak 1 pradowy (rysunek , s
zblizone w dziataniu. Jedyna réznica jest taka, ze tory napieciowe wykorzystuja na wejsciu
nastawny dzielnik napiecia oraz wtérnik napieciowy, zas tor pradowy jest wyposazony w
bocznik i wzmacniacz pomiarowy z regulowanym wzmocnieniem. Nastepnie w obu typach
sygnat zostaje przesuniety z przedziatu 0 4+ 4.096 V na 2.048 £ 2.048 V. Kolejny wtérnik

napieciowy przenosi go na wejscia przetwornika.

Nastawn i _
. .y Witornik Sumator Wtornik
—Wejscie Napisciowe—> dZielnik o > - > o Do Przetwornika—»
- napieciowy napiecia napigciowy
napiecia
;; Dodatnie
Regulator P
atenuach odniesienia

Rys. 3.9: Diagram blokowy toru napieciowego wej$ciowego

Selektor dzielnika

U10A
MCP6024-1P

Do A/C

Rys. 3.10: Schemat ideowy toru napieciowego wejéciowego

o i Wzmacniacz Sumator Wtornik
—Wejscie Pradowe—> Bocznik > - > I > - —Do Przetwornika—»
pomiarowy napigcia napigciowy
Dodatnie
Regulator P
WEmocnienia napiecie
odniesienia

Rys. 3.11: Diagram blokowy toru pradowego wej$ciowego

36

Rozdziat 3. Konstrukcja budowanego urzadzenia

Selektor wzmocnienia

”t R26

2 6 25K Trim
Hfse 4 F)Yi LR t Ulo
8141 14 R INA122PA
) P U10D
2 6 MCP6024-IP
Hfse W
8 ! 1a| | R Do A/C
©)c WA
2 6
e} Ko
|
8 !] | Ra2
> 1P
K12 40k G=10

2105.26 G=100
201.005 G=1000

Rys. 3.12: Schemat ideowy toru pradowego wejsciowego

Tory analogowe wyjSciowe

Oba tory wyjsciowe sa na poczatku identyczne — napiecie z przetwornika (0-+4.096 V)
jest zsumowane z ujemnym napieciem odniesienia, w celu osiggniecia symetrycznego prze-
dziatu £1.024 V. Dla toru napieciowego trafia ono bezposrednio na gtéwny wzmacniacz,
ktory jednoczesnie odpowiada za przeskalowanie go oraz za sterowanie elementami mocy,

ktore sa potaczone z gniazdem BNC.

Sumator Wzmacniacz Wzmacniacz L
—0ud Przetwornika— ., 4 .. > —Wyjscie Napigciowe—»>
napiecia napiecia mocy
F 3
Ujemne
napigcie Sprzez
odniesienia

Rys. 3.13: Diagram blokowy toru napigciowego wyjsciowego

-2.048 U20B
R27
RA4TKE 2 10.'3,, @
R31
R30
R47TK =
o B -_
Od C/A VCC =

Rys. 3.14: Diagram blokowy toru napigciowego wyjsciowego

Wyjscie pradowe jest zbudowane jako zrédlo pradowe sterowane napieciowo. Sklada
sie ono z dwoch wzmacniaczy. Jeden odpowiada za sterowanie elementami mocy, zas

drugi mierzy spadek na boczniku (co ,oblicza” prad), a nastepnie odpowiednio koryguje

37

Dawid Najda

gltowny wzmacniacz, w celu uzyskania charakterystyki pradowej zaleznej tylko od napiecia
wejsciowego, nie za$ od rezystancji podtaczonej do portu. Zbudowane zostato tez drugie
wyjscie pradowe, z bocznikiem o wigkszym oporze. Pozwala ono wytworzy¢ mniejszy, lecz

duzo precyzyjniejszy prad. Jest ono jednak sterowane jednocze$nie z gtéwnym zroédtem,

tym samym wyjsciem przetwornika.

Zrodio
Prostwomia—>| Sumatgr N W}ormk pradowe N Wzmacniacz fscis Pradow
napigcia napieciowy sterowane mocy
napieciowo
Ujemne
napiecie
odniesienia

Rys. 3.15: Schemat ideowy toru pradowego wyjsciowego

vce
0od C/A 5
Q5
D130
= R35
\Q6 R 10
D140
-vee
Y
U200 A
Ll
R4TK - -
100K Trim 100K Trim
R49] =
V R4TE) :
2.048 A e -
= = o7
D139
gl R36
Q8 R 1k
D140]
1 1
)
-vce 2
Header

Rys. 3.16: Schemat ideowy toru analogowy pradowego wyjsciowego

3.2 Polaczenie z komputerem

Komunikacja miedzy urzadzeniem a komputerem mogta by¢ zaimplementowana na
wiele sposobéw. Rozwiazania klasyczne - RS232/RS485 — niestety sa przestarzale i niewy-
godne w uzyciu (grubosé kabla, dystans, szybkosé przesytu).

Poczatkowo rozwazane byto potaczenie przez USB, jednak ma ono wady: wymaga kon-
wertera USB-UART po stronie kontrolera oraz emulatora portu COM po stronie komputera.
Do tego wymaga posrednika odpowiadajacego za odizolowanie elektryczne uktadu od
komputera, co jest jednym z zatozen projektu. Mozliwe sa dwie topologie, gdzie uktad
odpowiedzialny za izolacje jest umieszczony przed lub za konwerterem. Izolator dla UART

jest duzo prostszy ze wzgledu na fakt, ze dana linia przesyta informacje tylko w jedng

38

Rozdziat 3. Konstrukcja budowanego urzadzenia

strone, do czego wystarczy prosty optoizolator. USB wymaga dwukierunkowego przesytu
na obu zytach, co komplikuje budowe. Z drugiej strony, izolator umieszczony za konwer-
terem powoduje konieczno$¢ zasilania konwertera z komputera, a wiec naraza port lub
komputer na uszkodzenie w przypadku uszkodzenia nawet samego przewodu.

Lepszym rozwiazaniem jest komunikacja przez port Ethernet. Jego porty posiadaja
uktady izolujace po obu stronach, wigc nawet w przypadku uszkodzenia przewodu, kom-
puter nie jest narazony. Przew6d moze by¢ podpiety bezposrednio miedzy urzadzeniami
(crossover), gdzie umozliwia transmisje na spora odleglos¢, lub tez poprzez sie¢ - mode-
m/router itd. - co pozwala na catkowicie zdalng prace z urzadzeniem, z dowolnej odlegto-
Sci. Jest fabrycznie wspierany przez prawie kazdy komputer oraz tatwy do podlaczenia
do mikrokontrolera - wymaga tylko gotowego modutu z portem Ethernet. Dodatkowo
pozwala tez w standardach 10BASE-T i 100BASE-T na bardzo proste przestanie zasilania
po dwoch nieuzywanych parach w przewodzie. Umozliwiajg to splittery, odlaczajace te
pary od wtyczki RJ45 dla ztacza zasilajacego.

Na rysunku przedstawiono kilka dostepnych komercyjnie uktadow. Mimo iz wy-
gladaja podobnie, réznia sie dziataniem. Wszystkie nazwy odnosza si¢ zaréwno do samych
uktadow, jak i gotowych ptytek, na ktorych sie znajduja. ENC28J60 i WN5500 komunikuja
sie poprzez protokét SPI. Oznacza to jednoczesnie, ze muszg same implementowac stos
TCP/IP oraz warstwe MAC. Modut LAN8720 i DP83848 tacza sie za pomoca interfejsu RMII
(modyfikacja Media-Independent Interface, oznaczona Reduced, wykorzystuje 10 przewo-
déw, w poréwnianiu do 18 dla MII). Jest on dedykowany do taczenia warstwy PHY i MAC.
Oznacza to, ze moduty te implementuja tylko warstwe fizyczng, za$ zadaniem mikrokon-
trolera jest zarzadzanie warstwg MAC.

PHY to warstwa fizyczna — najnizsza w stosie 0SI. Implementuje ja kazde urzadzenie
taczace sie w jakikolwiek fizyczny sposéb, zaréwno przewodowy jak i bezprzewodowy.
Warstwa MAC (ang. Medium Access Control) to druga w stosie 0SI, m.in. odpowiada za
fragmentacje wiadomosci i pomaga w korekcji btedéw.

Zostalo przetestowane dziatanie dwoch moduléw. ENC28J60 nie jest bezposrednio
wspierany przez Espressif, tylko wymaga dodatkowych kodow, do tego posiada dluga
liste errata. Udato sie go uruchomié, jednak jego praca jest bardzo niestabilna i przewaznie
przestawal dziataé¢ po uptywie maksymalnie kilku minut.

Modut LAN8720 co prawda zuzywa wigcej wejs¢ mikrokontrolera, jednak to on okazat
sie rozwigzaniem dziatajacym stabilnie, o tatwym potaczeniu i implementacji w oprogra-
mowaniu, bez problemu komunikujac si¢ z innymi urzadzeniami, np. routerem. Wystar-
czylto skonfigurowaé sygnat zegara jako idacy od procesora do modutu. Mimo dlugich
potaczen prototypu, nie bylo problemu ani z zasilaniem, ani z zaktéceniami sygnatow.
Wada okazalta sie jednak predkosé przesytu, jak wynikto z testow, osiggajaca szczytowo
3.5kB/s gdzie najwolniejszy standard Ethernet to 10 MB/s, zas modut wedtug specyfi-

kacji powinien obstugiwaé¢ nawet 100 MB/s. By¢ moze takie parametry sa osiggalne na

39

Dawid Najda

dedykowanej ptytce drukowanej.

1] 64 iﬂ@f

[Eiis]so =7

VS01LL6YH

=
=)
3
=3
=
= &
e S
-3

i

evsesdafid

(c) WN5500 (d) DP83848

Rys. 3.17: Przyktadowe moduly Ethernet

Ostatecznie wybranym rozwiazaniem okazalo sie potaczenie za pomoca whudowanego
w ESP32 komponentu Wi-Fi, ktore nie dos¢, ze zaoferowato duzo wieksza przepustowoscé i
kompletne pozbycie mechanicznego potaczenia z komputerem, ale dodatkowo pozwolito na
zwolnienie jednego z bardzo pozadanych interfejséw SPI oraz innych GPIO. Niestety wada
potaczenia bezprzewodowego jest mozliwos¢ wystgpienia np. niespodziewanych opo6znien
czy chwilowych wstrzyman transferu, co moze spowodowaé nieaktualnos¢ danych lub w
skrajnym przypadku nawet przepetnienie bufora probek. Dodatkowo jako$é przesytu be-

dzie duzo bardziej zalezna od dystansu niz przy potaczeniu przewodowym.

3.3 Oprogramowanie

Program dzieli sie na kilka czesci, przedstawionych nizej. Do dziatania wykorzystane
sg rozne klasy i biblioteki, ktére pozwalaja w pewnym stopniu ukry¢ niskopoziomows,
obstuge za réznymi interfejsami. Stworzone zostalty biblioteki do obstugi przetwornika A/C
(dodatek , przetwornika C/A (dodatek , ekspanderéw GPIO (dodatek .

Fragmenty kodu wazniejszych czesci wraz z opisami sg przedstawione w dodatku A —

Dokumentacji techniczne;j.

3.3.1 Inicjalizacja ukladu

Schemat blokowy inicjalizacji zostal przedstawiony na rysunku [3.18] Na samym po-
czatku zostaja skonfigurowane: protokot Wi-Fi, interfejsy SPI do sterowania przetworni-
kami, interfejs I2C do sterowania ekspanderami oraz odpowiednie piny GPIO dla wyjs¢ i
wej$é cyfrowych. Pézniej nastepuje inicjalizacja podzespotéw (dodatek : utworzenie
transakcji SPI, inicjalizacja przetwornikéw (utworzenie jako urzadzenn SPI), rezerwacja

magistral, inicjalizacja ekspanderéow, wyzerowanie wyj$¢ analogowych i cyfrowych oraz

40

Rozdziat 3. Konstrukcja budowanego urzadzenia

wytaczenie przekaznikéw wejsé analogowych. Finalnie tworzony jest zegar (ang. timer),
odpowiadajacy za synchronizacje wewnatrz programu, oraz uruchamiany jest watek In-
terpretera odpowiedzialny za wykonywanie zadan i obstuge catego sprzetu wejsciowego i
wyjéciowego. Przygotowany jest réwniez bufor na dane oraz zmienne stuzace do komuni-
kacji miedzy watkami. Po tym wszystkim uruchamiany jest serwer HTTP odpowiedzialny

za komunikacje ze Swiatem.

Inicjalizacja Inicjalizacja
Komunikatora podzespotow

START START START
Start Wyczyszczenie Ustawienie Konfiguracja
Wi-Fi bufora GPIO guracy

U

Program Serwer HTTP

START

l
l

Inicjalizacja Wyzerowanie flag Przygotowanie Wiaczenie
12C stanu watkow transakcji SPI watku serwera

Inicjalizacja Inicializacia Podpiecie obstugi
g ! STOP .) poszczeg6lnych
o ADC URLI

:
-
:

|
|

Inicjalizacja Inicjalizacja
Komunikatora DAC STOP
—
Inicjalizacja Inicjalizacja
podzespotéw ekspanderéw
Serwer Reset
HTTP wejs¢ i wyjsé
sTOP In|c_JaI|zacla
timera

|

Start watku
Interpretera

STOP

1

Rys. 3.18: Schemat blokowy inicjalizacji wszystkich komponentéw

3.3.2 Praca ciggla

Po skoniczeniu inicjalizacji urzadzenie wykonuje dwa gltéwne zadania. Jedno to Inter-

preter, czyli watek odpowiedzialny za wykonywanie wgrywanych zadan. Jest on na state

41

Dawid Najda

przypiety do drugiego rdzenia (CPU1, APP CPU), ma najwyzszy priorytet i nie dopuszcza
niczego innego poza przerwaniami. Z tego powodu task watchdog, odpowiedzialny m.in.
za monitorowanie zuzycia procesora i czasu przydzielanego zadaniom, jest wylaczony na
tym rdzeniu.

Na pierwszym rdzeniu (CPUO, PRO CPU) wykonywana jest cala reszta zadan: serwer
HTTP, obstuga stosu TCP/IP, serwera DNS, komunikacji przez Wi-Fi, oraz réznych innych
wewnetrznych funkcji wymaganych do dziatania. Sa one wszystkie zarzadzane przez sys-
tem czasu rzeczywistego — zmodyfikowany FreeRTOS.

Serwer odpowiada za calg komunikacje ze Swiatem. Obstuguje kilka adreséw, bedacych

jednoczesnie punktami koncowymi API, ktore sa opisane ponize;j.

3.4 Punkty koncowe API

Serwer HTTP obstuguje doktadnie cztery adresy, z czego trzy to punkty koncowe APT,
za$ jeden odpowiada za przesyt obrazka favicon.ico, ktéry jest automatycznie zadany

przez np. przegladarki i zostal dodany w celu unikniecia btedow 404.

(1

Rys. 3.19: Obrazek favicon.ico przedstawiajacy symbol przetwornika

3.4.1 Powitanie, pomoc, ogdlne informacje

Pierwszy punkt koncowy znajduje si¢ pod domyslnym, gtéwnym adresem: / i uzywa
metody GET. Zwraca on staly obiekt JSON, ktory zawiera podstawowe informacje, jak data
kompilacji, wersja kompilatora, wersje srodowiska Espressif, adresy API, liste instrukcji
wraz z ich opisami, argumentami i zwracanymi danymi, przyktadowy generator, liste

rodzajéw przebiegdw, przedzialy i rozdzielczo$é wejsé/wyjs¢é analogowych i inne.

3.4.2 Wgrywanie zadania do urzadzenia

Punkt koncowy odpowiedzialny za wgrywanie zadania i generatorow znajduje sie pod
adresem /settings i uzywa metody POST.

Ustawienia sg przesytane w tresci zapytania jako obiekt zakodowany w formacie JSON
(ang. JavaScript Object Notation). Jest to otwarty standardowy format plikéw i format
wymiany danych, ktéry wykorzystuje tekst czytelny dla cztowieka do przechowywania
i przesylania wartosci, ktére moga by¢ liczbami, ciggami znakéw, wartoSciami logicz-
nymi, tablicami (bedacymi lista wartosci) lub obiektami (tablicami tzw. asocjacyjnymi,

to znaczy sktadajacymi sie z par {nazwa, warto$¢}). Jest to powszechny format danych

42

Rozdziat 3. Konstrukcja budowanego urzadzenia

o réznorodnych zastosowaniach w elektronicznej wymianie danych, w tym w aplikacjach
internetowych z serwerami.

Na ustawienia sktadaja sie (wymagane) zadanie do wykonania oraz (opcjonalna) lista
generator6w przebiegéw DDS (ang. Direct Digital Synthesis, Bezposrednia synteza cyfrowa)
dla wyjs¢ analogowych. Obie czesci sg doktadniej opisane nizej. Kiedy uzytkownik wgrywa
ustawienia, sa one sprawdzane i parsowane (proces jest doktadniej opisany w dalszych
sekcjach). Jedli nie ma zadnych btedéw, zostaja one przeniesione i zapisane na ‘state’
(tzn. do momentu ich zmiany lub utraty zasilania). Pozwala to powtarza¢ pomiary bez

koniecznosci wgrywania na nowo tego samego programu.

3.4.3 Wykonywanie zadania i odbiér danych

Punkt koncowy odpowiedzialny za faktyczne wykonanie zadania: sterowanie wyjsciami,
mierzenie wejs¢ i przesytanie wynikow do uzytkownika znajduje sie pod adresem /io i
uzywa metody GET. Przyjmuje on jeden parametr w query — tb, okreslajacy rozmiar w
bajtach pomiaréw czasu. Przyjmuje wartosci od 0 do 8, gdzie 0 oznacza, ze czas wykonania
pomiaru nie jest zapisywany, zas 8 zwraca petng 64-bitowa liczbe z timera synchronizu-
jacego. Przewaznie 4 lub nawet 2 bajty wystarcza, szczegdlnie dla krotkich zadan lub w
przypadku, gdy uzytkownik bedzie we wtasnym programie pilnowal ewentualnego prze-
kroczenia zakresu tych wartosci.

W momencie zadania wykonania zadania watek Interpretera jest powiadamiany, prze-
chodzi przez inicjalizacje (reset wyjs¢, reset obiektu zadania, reset i start zegara) i zaczyna
pobieraé po kolei komendy z zadania, wykonujac odpowiedni kod w celu ich realizacji oraz
wstawiajac zmierzone wartosci do bufora. Watek odpowiedzialny za serwer odczytuje dane
z bufora i wysyta je do klienta. Caly proces trwa az do skonczenia programu lub zerwania
potaczenia.

Zamiast kodowaé zmierzone dane w celu bezpiecznego przestania formatem JSON,
wybrana zostala bardziej prymitywna, lecz jednoczesnie szybsza i prostsza w uzyciu
metoda. Program odsyta surowe dane z naglowkiem okreslajacym typ zawartosci jako
octet-stream w postaci ciagu bajtéw. Jest to, zaleznie od rodzaju odczytywanych da-
nych, liczba catkowita (ze znakiem lub bez) lub liczba zmiennoprzecinkowa oraz opcjonal-
nie obecny czas jako liczba catkowita o wybranej dtugosci. Takie kodowanie pozwala tez
wysytaé i odbieraé¢ dane fragmentami (co byloby trudne w przypadku wiadomosci JSON,

chyba ze kazdy fragment byltby kodowany osobno).

3.5 Parser i interpreter

Aby wykonaé przestane przez uzytkownika zadanie, musi ono najpierw zosta¢ odczy-

tane. Oczywiscie mozna by to robi¢ od razu w trakcie wykonywania, jednak ze wzgledu

43

Dawid Najda

na wybrany format:

1. przetwarzanie tekstu nie nalezy do najszybszych, szczegélnie na mikrokontrolerach,

2. zadanie w wersji sparsowanej powinno zaja¢ mniej miejsca w pamieci niz surowy
tekst,

3. takie zadanie mozna wykonywaé wielokrotnie, bez potrzeby kolejnego analizowania

przy kazdym uruchomieniu.

Z tego wzgledu zadanie jest zamienione na drzewo instrukcji w momencie przestania, co
jednoczesnie pozwala tez wykry¢ btedy i poinformowac uzytkownika. Drzewo takie zostaje
zapisane w pamieci i moze by¢ wielokrotnie wykonywane, wymaga jedynie zresetowania

wskaznika do obecnej instrukcji.

3.5.1 Zamiana tekstu na format binarny — parser zadania

Analizator sktadniowy lub parser to program dokonujgcy analizy sktadniowej danych
wejsciowych w celu okreslenia ich struktury gramatycznej w zwigzku z okreslong gra-
matyka formalng. Analizator umozliwia przetworzenie tekstu czytelnego dla cztowieka w
strukture danych przydatna dla oprogramowania. Wynikiem analizy sktadni dokonywanej
przez parser najczesciej jest drzewo sktadniowe.

Dokladna budowa pomocniczych struktur oraz parsera opisana jest w dodatku [A.2.5]
jednak zostanie pokrétce przedstawiona tutaj. Najpierw stworzono strukture, ktéra re-
prezentuje pojedyncza instrukcje, tzn. zawiera wykonywang operacje oraz opcjonalnie
port, ktérego ta operacja dotyczy i/lub dowolny argument w postaci liczby caltkowitej
lub zmiennoprzecinkowej. Pézniej powstata klasa przechowujaca liste instrukcji — Scope
oraz klasa pozwalajaca je powtarza¢ — Loop. Klasa Program zawiera jeden Scope z catym
zadaniem, a takze implementuje parser. Parser najpierw tworzy stos Scope’éw, gdzie do
tego na gorze stosu dopisywane sa wyrazenia. W petli odczytywane sa kolejne instruk-
cje, dzielone nastepnie na operacje i argumenty. Jesli operacja to LOOP, odczytywana jest
pozadana ilod¢ iteracji, nowa petla zostaje utworzona i dodana do stosu. Jesli operacja
to END, obecny Scope zostaje zamkniety i usuniety ze stosu, za$ kolejne instrukcje beda
dopisywane do poprzedniego, nizszego poziomu. W pozostatych przypadkach, operacja
to instrukcja do sprzetu. Sprawdzana jest nazwa operacji, zapisywany jest odpowiedni
OPCode, sprawdzana jest wymagana liczba argumentow i zostaja one odczytane. Jesli nie
wystapit zaden btad, zadanie jest poprawne; zostaje zapisane w stalej czeSci pamieci i

moze zosta¢ wykonane.

3.5.2 Interpreter zadan

Interpreter to program komputerowy wykonujacy inne programy [28]. Jest kluczowym

elementem znacznej czeSci implementacji jezykow skryptowych oraz jezykow kompilowa-

44

Rozdziat 3. Konstrukcja budowanego urzadzenia

nych do kodu bajtowego [5]. Schemat blokowy zostal przedstawiony na rysunku , zas
doktadny opis kodu znajduje sie w dodatku [A.59] Watek Interpretera oczekuje na sygnal
startu od serwera HTTP. Po otrzymaniu go, inicjalizuje porty i zegar. Nastepnie w petli od-
czytuje instrukcje z zadania i je wykonuje, czekajac na synchronizacje jesli tak zazadano.
Jesli wystapi btad, klient roztaczy sie lub zadanie zostanie skonczone — ponownie ustawia

stan domy$lny portéw, sygnalizuje koniec pracy i wraca do oczekiwania na zadanie.

45

Dawid Najda

A

Btedne.

Nie.

A

Tak

A

Tak-

Y

START

<
¢

A

Czekanie na

rozkaz startu [

Zajecie mutexow

'

Reset struktur
zadania

Reset
wejsé i wyjsé

Test
zadania

Poprawne

Reset i start
timera

Pobranie nowej
instrukcji

Instrukcja
istnieje?

Tak
A

Oczekiwanie na
synchronizacje

A

Wykonanie kodu
dla tej instrukcji

Wystapit btagd?

Nie

Zewnetrzny
STOP?

Zatrzymanie
timera

Reset

wejsé i wyjs¢

Sygnalizacja
konca pracy

46

Rys. 3.20: Schemat blokowy interpretera

Rozdziat 3. Konstrukcja budowanego urzadzenia

3.6 Wykonywanie zadan

Zadanie to lista wyrazen — komend wraz z ich argumentami. Kazde wyrazenie konczy
sie znakiem ;, zas komenda i argumenty oddzielone s biatymi znakami. Dla poprawienia
czytelnosci, w catym programie moga by¢ swobodnie dodawane kolejne biate znaki (np.
nowe linie, tabulacje), zar6wno miedzy argumentami jak i catymi wyrazeniami.

Wyrazenie moze by¢ bezposrednig instrukcja do sprzetu lub stuzy¢ do zmiany prze-
ptywu programu. Z kilku mozliwoséci wspomnianych wczesniej, zostata zaimplementowana
tylko petla, ze wzgledu na jej prostote. Petla moze zawieraé¢ kolejne wyrazenia, zarowno
instrukcje jak i kolejne petle. Takie zagniezdzenie pozwala na tatwe stworzenie wielokrot-
nie powtarzajacych sie pomiaréw, sekwencyjnych przetgczen, itp. Ponizej przedstawione

sg dostepne wyrazenia wraz z ich funkcja.

3.6.1 Petle

Deklaracja petli sktada sie z dwoch wyrazen — otwarcie, wraz z ilodcia iteracji, oraz

zamkniecie. [los¢ otwar¢ i zamknie¢ w programie musi by¢ taka sama.

LOOP <iterations (uint32)>;
[...]
END;

3.6.2 Instrukcje

Reszta wyrazen to instrukcje. Sa one podzielone na kilka kategorii, zaleznie od pet-

nionej funkcji. Same kategorie nie maja jednak zadnego znaczenia technicznego.

Instrukcje pomocnicze

e No OPeration — wartos¢ domyslna, nic nie robi, nie nalezy jej uzywac.
Sktadnia: NOP

o DELAY — opdznienie, ustawia nastepny czas synchronizacji na podstawie poprzed-
niego.
Sktadnia: DELAY <microseconds (uint32)>

o GET TiMe — jesli nie czeka na synchronizacje, ustawia nastepny czas synchronizacji
na ‘teraz’
Sktadnia: GETTM

47

Dawid Najda

o ReSeT TiMe — resetuje i restartuje zegar, tzn. pomiary czasowe odnoszg sie do tego
momentu.
Sktadnia: RSTTM

Instrukcje do ustawiania wejsé analogowych

o Analog Input ENable — taczy wejscia z dzielnikami i wzmacniaczami.
Sktadnia: ATEN

o Analog Input DISable — odtacza wejscia.
Sktadnia: AIDIS

o Analog Input RaNGe — ustawia przedzial wartosci portu wejéciowego (wybiera dziel-
nik napiecia lub mnoznik wzmacniacza pomiarowego). Wylaczony /minimalny/sred-
ni/maksymalny.

Sktadnia: AIRNG <port (1]2]314)> <range (OFF|MIN|MED|MAX)>

Instrukcje do pomiaréw wejsé analogowych

o Analog Input ReaD Float — zwraca pomiar (wykonany podang ilo$é razy i usred-
niony) w jednostkach V, A jako 32-bitowa liczba zmiennoprzecinkowa (float). W
Sktadnia: AIRDF <port (1/2[314)> <repetitions>

o Analog Input ReaD Milli — zwraca pomiar (wykonany podana ilo$¢ razy i usred-
niony) w jednostkach mV, mA jako 32-bitowa liczba caltkowita (int32). Wykonany
podang ilos¢ razy i usredniony.

Sktadnia: AIRDM <port (112|3[4)> <repetitions>

o Analog Input ReaD Micro — zwraca pomiar (wykonany podang ilo$¢ razy i usred-
niony) w jednostkach pV, pA jako 32-bitowa liczba catkowita (int32). Wykonany
podang ilos¢ razy i usredniony.

Skladnia: AIRDU <port (1]2[314)> <repetitions>

Instrukcje do sterowania wyj$¢ analogowych

o Analog Output VALue — wystawia na wyjscie podang wartos¢.
Skladnia: AOVAL <port (1]2)> <voltage (float)>

o Analog Output GENerator — wystawia na wyjscie wartos¢ obliczong przez generator
DDS.
Sktadnia: AOGEN <port (1|2)> <generator_idx (uint)>

48

Rozdziat 3. Konstrukcja budowanego urzadzenia

Instrukcje do pomiaréw wejsé cyfrowych

o Digital Inputs ReaD — zwraca stan pindéw jako 4 bity w liczbie catkowitej (uint32).
Sktadnia: DIRD

Instrukcje do sterowania wyj$¢ cyfrowych

o Digital Outputs WRite — bezposrednio ustawia stan pinéw.
Sktadnia: DOWR <state (uint4 hex/oct/dec)>

o Digital Outputs SET — zatacza piny odpowiadajgce bitom w stanie wysokim (bitowy
OR).
Sktadnia: DOSET <state (uint4 hex/oct/dec)>

o Digital Outputs ReSeT — wytacza piny odpowiadajace bitom w stanie wysokim.
Sktadnia: DORST <state (uint4 hex/oct/dec)>

o Digital Outputs AND — wytacza piny odpowiadajace bitom w stanie niskim.
Sktadnia: DOAND <state (uint4 hex/oct/dec)>

o Digital Outputs XOR — wykonuje bitowo operacje eXclusive OR.
Sktadnia: DOXOR <state (uint4 hex/oct/dec)>

Opis argumentéw komend

Typ int oznacza liczbe catkowita, z przedrostkiem u jest ona bez znaku (unsigned)
tj. bez wartosci ujemnych. Dodatkowa liczba na koncu oznacza ilo$é bitéw (a wiec okre-
sla maksymalna warto$¢ jaka moze by¢ podana). Typ float oznacza liczbe dziesietna z
opcjonalnym utamkiem, ktora bedzie zapisana jako zmiennoprzecinkowa.

Przedziat dla wej$¢ analogowych jest podawany jako cztery mozliwe stowa: OFF, MIN,
MED, MAX. OFF to oczywiscie odlaczenie wejscia - powoduje wytaczenie wszystkich przekaz-
nikow. W przypadku wej$¢ napieciowych MIN powoduje bezposrednie przekazanie wejscia
na przetwornik, MED powoduje 10x pomniejszenie napiecia, zas MAX to 100x pomniejszenie.
Oznacza to, ze maksymalne mierzalne napiecia na wejsciu to odpowiednio +4V, £40V
i £400V. W przypadku wejscia pradowego mierzony jest spadek napiecia na boczniku
1 €2; MIN powoduje 1000x wzmocnienie, MED powoduje 100x wzmocnienie, zas MAX to tylko
10x wzmocnienie. Oznacza to, ze maksymalny prad ptynacy przez wejscie to odpowiednio
+4mA, £40mA i +£400mA.

3.7 Generator sygnalow

Oproécz programu, w ustawieniach mozna dotaczy¢ dane opisujace wirtualne genera-

tory przebiegdéw. Generator to lista obiektéw sygnatow, kazdy taki obiekt zawiera para-

49

Dawid Najda

metry A — amplitude (w woltach lub amperach) i S — obiekt poszczegdlnego sygnatu.
Obiekt sygnatu zawiera parametr WF — jego nazwe-kod oraz odpowiednie parametry

poszczegdlnych typow, opisane nizej. Podstawa czasowa to jedna mikrosekunda.

3.7.1 Typy przebiegéw mozliwych do uzycia w generatorach
Istnieje kilka typow przebiegow, kazdy w inny sposob oblicza wartosci wyjsciowe na
podstawie obecnego czasu.
Wartos¢ stata
Okreslany w kodzie jako Const. Zwraca warto$¢ 1 niezaleznie od czasu. Parametry:
brak.
Impuls
Okreslany w kodzie jako Impulse. Zwraca wartos¢ 1 dla czasu 0, 0 dla reszty. Para-
metry: brak.
Przebieg sinusoidalny

Okreslany w kodzie jako Sine. Zwraca wartos¢ obliczona za pomoca przyblizonej funk-
cji sinus. Parametry:

o T — okres w mikrosekundach (int32)

Przebieg prostokatny

Okreslany w kodzie jako Square. Zwraca wartos¢ 1 jesli czas wewnatrz okresu jest
mniejszy niz Duty, 0 w przeciwnym przypadku. Parametry:
o T — okres w mikrosekundach (int32)

o D — czas trwania stanu wysokiego (int32)

Przebieg tréjkatny

Okreslany w kodzie jako Triangle. Przebieg jest symetryczny, zarowno w czasie jak i
warto$ciach. Zaczyna od zera i ro$nie. Parametry:

o T — okres w mikrosekundach (int32)

Sygnatl Swiergotowy

Okredlany w kodzie jako Chirp. Jest to funkcja sinusoidalna z czestotliwoscia zmie-
niajaca sie liniowo w czasie. Parametry:

o T — czas trwania fragmentu w mikrosekundach (int32)

20

Rozdziat 3. Konstrukcja budowanego urzadzenia

o FS — czestotliwosé startowa (float)

o FD — zmiana czestotliwosci (koniec — poczatek) (float)

Sygnal swiergotowy logarytmiczny

Okreslany w kodzie jako ChirpLog. Jest to funkcja sinusoidalna z czestotliwoscia zmie-
niajaca si¢ wyktadniczo w czasie, a wigc liniowo w skali logarytmicznej. Parametry:

o T — czas trwania fragmentu w mikrosekundach (int32)

o FS — czestotliwosé startowa (float)

o FR — stosunek czestotliwosci (plg‘c);l;‘e:k) (float)

Sygnal losowy

Okredlany w kodzie jako Random. Generuje wartosci losowe roztozone liniowo w prze-

dziale [—1,1). Parametry: brak.

3.7.2 Modyfikatory przebiegéw

Modyfikatory przebiegdéw rowniez sa klasa dziedziczaca z gtéwnej klasy Signal, jednak
roznig sie od poprzednich tym, Ze przyjmuja one przynajmniej jeden inny sygnat jako

parametr.

Opdznienie
Okreslany w kodzie jako Delay. Przesuwa w czasie dowolny inny sygnat. Parametry:

o D — czas przesuniecia w mikrosekundach (int32)

e S — obiekt sygnatu

Wartos$é bezwzgledna

Okreslany w kodzie jako Absolute. Zwraca wartos¢ bezwzgledna dowolnego innego
sygnatu. Parametry:

e S — obiekt sygnatu

Clamp / minmax

Okreslany w kodzie jako Clamp. Zwraca warto$¢ dowolnego innego sygnatu, chyba ze
wykracza poza podana warto$¢ minimalng lub maksymalng — w takim przypadku zwraca
przekroczong granice. Parametry:

e L — dolna granica (float)

o H— gbrna granica (float)

e S — obiekt sygnatu

51

Dawid Najda

Funkcja liniowa

Okreslany w kodzie jako LinearMap. Zwraca wartos¢ dowolnego innego sygnatu prze-
ksztatcong za pomocy funkcji liniowej y = A - x + B. Parametry:

o A — wspdlezynnik kierunkowy (float)

e B — wyraz wolny (float)

e S — obiekt sygnatu

Iloczyn sygnatow

Okreslany w kodzie jako Multiply. Generuje dwa podane sygnaly i zwraca iloczyn ich
wartos$ci. Parametry:

e S1 — obiekt sygnatu 1

e S2 — obiekt sygnatu 2

3.7.3 Opis przykladowych generatorow

Ponizej przedstawione sa struktury JSON reprezentujace kilka generatorow, tworzacych
rozne przebiegi.
Obiekt ustawien generatora posiadajacego jeden sygnal sinusoidalny o amplitudzie 1V

i okresie 1000 ps.

L
{
"A": 1,
"t {
"WF": "Sine",
"T": 1000
}
}
]

Obiekt ustawien generatora imitujacego dzialanie inwertera - przyblizenie sinusa za

pomoca dwoch sygnatéw prostokatnych, o czestotliwosci i wartosci RMS rownej zasilaniu

sieciowemu.
[
{
IIAII : 1 s
||Sn : {

52

10

11

12

13

14

15

16

17

18

19

20

21

22

Rozdziat 3. Konstrukcja budowanego urzadzenia

"WF": "Square",
"T": 20000,
"D": 7100
}
s
{
"A": -1,
nsre {
"WF": "Delay",
"D": 10000,
msre {
"WF": "Square",
"T": 20000,
"D": 7100
}
}
+

]

3.8 Prototyp bloku wejsé-wyjsé analogowych i cyfro-

wych

Ponizej przedstawione jest zdjecie zbudowanego urzadzenia. Cato$¢ ma wymiary 31 cm
na 19 cm na 5.5 cm (32.5 cm na 20.5 cm na 5.5 cm uwzgledniajac zewnetrzne elementy ztacz
wejsé i wyjsé). Do stworzenia uktadu zostala wykorzystana ptytka uniwersalna, na ktorej
umieszczono wszystkie komponenty. Po lewej stronie wida¢ wejscie zasilania 12V w po-
staci kostki elektrycznej. Obok znajduja si¢ regulatory napiecia +5V oraz wzmacniacze
napie¢ odniesienia £4.096 V i +2.048 V. Pod nimi (w lewym dolnym rogu) umieszczony
jest mikrokontroler ESP32 na swojej plytce ewaluacyjnej. Obok niego znajduja sie prze-
twornik A/C oraz wzmacniacz, nastepnie sumatory napiecia i kolejny wzmacniacz. Po
prawej stronie wida¢ rzad przekaznikow oraz sterujace nimi ekspandery i Darlingtony;
obok nich znajduja sie dzielniki napiecia i wzmacniacz pomiarowy oraz finalnie gniazda
BNC. W goérnej potowie ptytki znajduje sie przetwornik C/A, wzmacniacze oraz tranzy-
story mocy, tworzace wyjscia napieciowe i pradowe. W gérnym lewym rogu umieszczone
zostaly uktady (bufory i Darlingtony) obstugujace porty cyfrowe, oraz gniazda na termi-
nale srubowe stanowigce interfejs tychze. Ze wzgledu na prototypowg nature budowanego
urzadzenia, dziatanie wielu cze$ci uktadu jest kalibrowane za pomoca potencjometréw

wieloobrotowych.

23

Dawid Najda

0000000000
0000000000 C(COOOOOOQCQOOOO&

O
5608 0000000M000IATTIO ooooooococooaow~oce
> 203 000000CL 2 AAHOGOEN S0~
000Cw00e 1, 00&000000000 % 1900000,
000000800 0d I8 50E000000000000000C 0K E .~ 1660000606
000000000000 ==~ =—w— —__ 1000000
S == : ‘nooooooooooo - . 30y ¥ =RoF~

0000000

V-S00%A

‘mooooooooooooo
= ————— 5000000004
00000000000000080000000000000000000000a

00000000000

0000000000000000000000000000000000¢

000000000¢ "OQ(\QOO(’\

\VOOOOOOO

QIO
3

3

00000

&OQGOOO.WQGO COOO
1O C [)OGGCO0G60000000(
1 3 e 0 4 1 ~ 000G0000G0000K
000000933000000000000000)JO)@ . . w:OQOQ.OOQOOAJJJ)é

T80

)\v)\v\- 200000000©% 00

OCCCC..
Jﬁoococooo
0 OOOO

QO

450 .
5606600000006000000, 3
:000000000000000000 2 B

Q0000000000000
2000000000
000000000
DO000000

O
o)
O
Q!
o

R g h N parwrrsnnrr
7 . ’ 20200 OKHIZ £1091050 XL 2 40

S

000
D00000
00000
Q00 MNC

00000
D000

Q00000

Qc
Q0000

e
e T

/. . @ - BEEEES e

Zdjecie zbudowanego prototypu urzadzenia
54

Rys. 3.21

Rozdziat 4

Kalibracja i testy urzadzenia

Do testow zostaty w jezyku Python stworzone kody shuzace do wgrywania ustawien
i przetwarzania pomiaréow, ze wzgledu na jego prostote i szybkos¢ tworzenia. Urzadzenie
najpierw zostalo skalibrowane za pomoca kilku zadani (zostaly ustawione potencjome-

try regulujace). Nastepnie zostaly przeprowadzone trzy eksperymenty, majace na celu

potwierdzenie mozliwosci wykorzystania zbudowanego urzadzenia.

Aby utatwi¢ obstuge, zostala napisana niewielka klasa reprezentujaca urzgdzenie. Po-

zwala ona w zwiezty sposdb wgrywaé ustawienia, pobiera¢ dane na zywo oraz zapisywaé

i odczytywacé pomiary w plikach za pomoca czterech metod.

1 import requests

2 import struct

s import jsomn

4

5 class I0OBlock:

6

7

8

9

10

11

12

13

14

15

16

17

def

def

def

__init__(self, addr="http://192.168.4.1"):
self.addr = addr

settings(self, *, jsonstr=None, settings=None, task="",
generators=[]):
if jsonstr is None:
if settings is None:
settings = {"task": task, "generators': generators}
jsonstr = json.dumps(settings)
response = requests.post(self.addr + "/settings", jsonstr)

return json.loads(response.content)

get_iter(self, format, tb=0):

95

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1

2

3

Dawid Najda

with requests.get(self.addr + "/io7tb=" + str(tb), stream=True)
~ as req:

req.raise_for_status()

for bytes in

- req.iter_content(chunk size=struct.calcsize(format)):

yield struct.unpack(format, bytes)

def write file(self, fname, tb=0):
with requests.get(self.addr + "/io7tb=" + str(tb), stream=True)
< as req:
req.raise_for_status()
with open(fname, mode="wb") as fp:
for chunk in req.iter_content(chunk_size=None):
if chunk:
fp.write(chunk)

O@staticmethod
def read file iter(fname, format):
with open(fname, mode="rb") as fp:
for tpl in struct.iter_unpack(format, fp.read()):
yield tpl

Listing 4.1: Klasa I0Block upraszczajaca obstuge urzadzenia

Zadanie moze by¢ podane np. jako zmienna tekstowa lub odczyt z pliku, zas generatory
to po prostu tablica obiektow. Jest jednak mozliwos¢ podania gotowego obiektu ustawien

lub nawet przygotowanego tekstu w formacie JSON.

4.1 Kalibracja wejs¢ i wyjsé

Najpierw zostaly stworzone dwa mini-programy bazujace na przedstawionej wczesniej
klasie. Jeden stuzy do wgrywania ustawien, zas$ drugi do odbierania danych. Na samym
poczatku nalezalo ustawi¢ potencjometry regulujace dziatanie wszystkich wejéé¢ i wyjsé.
Do kalibracji urzadzenia potrzebne sa dane “na zywo”, dlatego strumien danych z urza-

dzenia jest na biezaco dzielony, konwertowany i wyswietlany w postaci liczbowe;j.

from IOBlock import IOBlock

iob = I0Block()

26

10

11

12

13

Rozdziatl 4. Kalibracja i testy urzadzenia

fp = open("program.prg", "r")

ret = iob.settings(task=fp.read())
print(ret)

Listing 4.2: Program stuzacy do wgrywania ustawien do urzadzenia

from IOBlock import IOBlock

iob = I0Block()

depends on received data

format = "<iI"
format = "<fI"
format = "<BxxxI"

for tpl in iob.get_iter(format, 4):
time = tpl[1]/1000000
data = tpl[0]
print("D:", data, "@:", time)

Listing 4.3: Program stuzacy do odbierania pomiaréw z urzadzenia

4.1.1 Kalibracja wejs¢ analogowych

Wejscia analogowe maja tylko jeden potencjometr, odpowiadajacy za ustawienie napiecia
(lub pradu) zera. Zaréwno zadanie jak i sposob kalibracji sa bardzo proste; wejscie zo-
staje zwarte do masy i potencjometr jest przestawiany tak dtugo, az wartosci zwracane
przez urzadzenie beda réwne zero. Zadanie przez 60 sekund wykonuje pomiary 10 razy na
sekunde i zwraca odczytang wartos¢. W razie potrzeby moze by¢ powtoérzone lub prze-
rwane w dowolnym momencie. Dla wej$cia pradowego zalecane moze by¢ wykorzystanie
komendy AIRDU.

AIRNG <numer wej$cia (1-4)> MIN;
ATEN;
LOOP 600;

DELAY 100000;

o7

5

6

1

2

Dawid Najda

AIRDM <numer wejscia (1-4)>;
END;

4.1.2 Kalibracja dzielnikéw napiecia i wzmocnien

Teraz mozna ustawi¢ dzielniki dla wej$¢ napieciowych oraz wzmocnienie dla wejscia pra-
dowego. W przypadku wej$¢ napieciowych zakres MIN nie jest regulowany, w przypadku
wejscia pradowego wszystkie trzy sa. Na wejscie podane jest jakies znane napiecie, na
przyktad z ktoregos regulatora, odniesienia wewnatrz urzadzenia lub zewnetrznej baterii.
Do poréwnania pomiaréw zostal wykorzystany miernik uniwersalny UT58D. Potencjome-
try dzielnikéw napiecia (lub regulujace wzmocnienie) sa przestawiane, dopdki zwracane

wartodci nie zgadzaja sie z rzeczywistoscia.

AIRNG <numer wejscia (1-4)> MIN;
ATEN;
LOOP 600;

DELAY 100000;

AIRDM <numer wejscia (1-4)>;
END;

4.1.3 Kalibracja wyjscia napieciowego

Wyjscie napieciowe ma dwa potencjometry. Jeden, podobnie jak w wejsciach, odpowiada
za ustawienie napiecia zera. Drugi odpowiada za doktadne ustawienie wzmocnienia.

Kalibracja pierwszego jest bardzo prosta: zadanie wpisuje do przetwornika kod odpo-
wiadajacy zeru, nastepnie nalezy ustawi¢ potencjometr tak, zeby napiecie faktyczne na

wyjsciu byto réwne zero.

AQVAL 1 O;
DELAY 100000000

Drugi program postuzyl do kalibracji wzmocnienia. Generuje on na zmiane napiecie bli-
skie granicznemu, tj. 10 V. Nalezy przestawia¢ potencjometr w sprzezeniu tak dtugo az
napiecie na wyjsciu dla obu polaryzacji zgadza sie z wartoscia zadana. Moze by¢ konieczne

ponowne skorygowanie wczesniejszego potencjometru.

LOOP 100;
AOVAL 1 10;

o8

3

4

5

6

Rozdziatl 4. Kalibracja i testy urzadzenia

DELAY 3000000;

AQVAL 1 -10;

DELAY 3000000;
END;

4.1.4 Kalibracja wyjscia pradowego

Wyijscie pradowe ma az pie¢ potencjometrow. Procedura jego kalibracji jest najbardziej
skomplikowana. Jeden, podobnie jak w wyjsciu napieciowym, odpowiada za ustawienie
pradu zera. Dwa kolejne (po jednym na tor) odpowiadaja za precyzyjne ustawienie trans-
konduktancji — zaleznosci pradu wyjsciowego od napiecia z przetwornika. Ostatnie dwa
(po jednym na tor) odpowiadaja za uniezaleznienie pradu wyjsciowego od podtaczonego
obcigzenia (oporu).

7 tego wzgledu ustawianie trwa troche od konca. Najpierw niezalezno$¢ od obcigzenia jest
osobno nastawiana dla obu kanaléw. Polega na zadaniu jakiego$ niezbyt duzego pradu
(jego wartos¢ i tak bedzie niedoktadna). Do wyjscia podpiete sa szeregowo opornik (np.
10-20Q2) oraz miernik ustawiony na pomiar pradu.

Nalezy cyklicznie zwiera¢ opornik i przestawia¢ potencjometr tak dtugo, az ptynacy prad
przestanie sie zmieniaé przy zwieraniu lub rozwieraniu (a wiec uniezalezni sie od obciaze-
nia). Mozna taki test przeprowadzi¢ réwniez z wiekszym oporem (np. 500 2) jednak prad
musi by¢ odpowiednio niski, aby nie nastapita saturacja. Zadanie stuzace do tej kalibracji

widnieje ponizej.

AQVAL 2 0.1;
DELAY 100000000

Drugim ustawieniem jest prad zera. Oba tory sa ustawiane wspolnie, wiec mozna mierzy¢
ten z mniejszym zakresem, gdyz to w nim blad bedzie lepiej widoczny. Nalezy przestawiaé
potencjometr tak dtugo, az przez miernik przestanie ptynaé¢ prad. Zadanie stuzace do tej

kalibracji przedstawiono ponize;j.

AQVAL 2 O;
DELAY 100000000

Finalnie ustawiana jest transkonduktancja. Poniewaz boczniki nie maja idealnie doktadnej
wartosci (tak samo sprzezenia i same wzmacniacze), taka korekta jest wymagana. Teraz
warto$ci mierzone musza zgadzaé sie z zadanymi — nalezy tak ustawié¢ potencjometr, aby

byto to prawda. Powinno si¢ to sta¢ jednoczes$nie dla pradéw dodatnich i ujemnych, jednak

29

-

-

-

2

Dawid Najda

jesli tak nie jest — moze by¢ wymagana ponowna korekta pradu zera — az obie wartosci

sa symetryczne.

LOOP 100;
AOVAL 2 0.1;
DELAY 3000000;
AQVAL 2 -0.1;
DELAY 3000000;
END;

4.1.5 Test wejs¢ cyfrowych

Wejscia cyfrowe nie sa regulowane, wiec zostato tylko przetestowane ich dziatanie. Ze
wzgledu na rezystory pulldown, stan jest domyslnie niski. Do kazdego z wejs¢ zostato
podtaczone napiecie (minimum 3.3V) i sprawdzono, czy stan cyfrowy zmienia sie po-
prawnie.

W programie odczytujacym pomiary zostata wprowadzona minimalna zmiana, ktora po-

woduje wyswietlenie osobno bitow:

data = "{:08b}".format (tpl[0])

Zas ponizej przedstawione jest zadanie odczytujace wejscia cyfrowe:

LOOP 10000;
DIRD;
DELAY 10000;
END;

4.1.6 Test wyjs¢ cyfrowych

Wyjscia cyfrowe rowniez nie sa regulowane, wiec zostato tylko przetestowane ich dziata-
nie. Ze wzgledu na wykorzystanie tranzystoréw Darlington, stan logiczny wysoki oznacza
przyciagniecie wyjscia do zera. Stan niski to wysoka impedancja.

Do wyjsé zostaty podiaczone cztery diody o wspolnym zasilaniu. Program po kolei “odli-

cza” od 0 do 15, wyswietlajac wynik w systemie dwéjkowym.

LOCP 1000;
DOWR O; DELAY 10000;

60

10

11

12

13

14

15

16

17

18

1

2

3

Rozdziatl 4. Kalibracja i testy urzadzenia

DOWR 1; DELAY 10000;
DOWR 2; DELAY 10000;
DOWR 3; DELAY 10000;
DOWR 4; DELAY 10000;
DOWR 5; DELAY 10000;
DOWR 6; DELAY 10000;
DOWR 7; DELAY 10000;
DOWR 8; DELAY 10000;
DOWR 9; DELAY 10000;
DOWR A; DELAY 10000;
DOWR B; DELAY 10000;
DOWR C; DELAY 10000;
DOWR D; DELAY 10000;
DOWR E; DELAY 10000;
DOWR F; DELAY 10000;
ENDLOQOP;

Wszystkie diody zaswiecaja sie i gasna w poprawnej kolejnosci. Sprawdzona zostata réw-
niez maksymalna czestotliwo$¢ — zmniejszajac op6znienia miedzy instrukcjami, a finalnie
catkiem je usuwajgc. Udato sie uzyska¢ wydajnosé rzedu < 10ps na przelaczenie, a wiec
czestotliwosé 100 kHz.

4.2 Sprawdzenie charakterystyki czestotliwoSciowej
wyjscia

Aby okresli¢ rzeczywiste mozliwosci urzadzenia, zostata zbadana charakterystyka czesto-
tliwosciowa toru wyjsciowego napieciowego. Wyjscie napigciowe zostato podtaczone do
oscyloskopu cyfrowego Rigol DS1052E. Za pomocg nizej przedstawionego programu zo-
staty po kolei generowane sinusoidy o amplitudzie 3V i réznych czestotliwosciach: 1 Hz,
10Hz, 100 Hz, 1kHz, 10 kHz.

LOOP 20000;
AOGEN 1 O;
DELAY 25;

END;

Listing 4.4: Zadanie stuzace do generowania sinusoid

61

Dawid Najda

Kazdy przebieg zostal zmierzony przez oscyloskop, czego wyniki sg przedstawione ponize;j:

RIGOL RUH F 1.4a6U

A AT AT AT AT
ll flr "r l(|{
RURVRIREEY
.’I; Inll !.I ,a'; ,l" JI

[CH 1 W==N

Rys. 4.2: Przebieg wygenerowanej sinusoidy o czestotliwosci 10 Hz

RIGOL T°D F 1.4aL)

i | /F |
/ / RVIRY

[EEFER 1.aa6l

Rys. 4.3: Przebieg wygenerowanej sinusoidy o czestotliwosci 100 Hz

62

Rozdziatl 4. Kalibracja i testy urzadzenia

RIGOL T°C

HFER 1.a8a.

Rys. 4.4: Przebieg wygenerowanej sinusoidy o czestotliwosci 1 kHz

RIGOL T°D

{_l

MFER 1.8

Rys. 4.5: Przebieg wygenerowanej sinusoidy o czestotliwosci 10 kHz

Tory wyjsciowe nie posiadaja filtrow dolnoprzepustowych, co wida¢ na przedstawionych
powyzej przebiegach. Z zarejestrowanych odpowiedzi czasowych mozna wyciggnac kilka
wnioskow. Przy czestotliwosci 10 kHz program pozwala na maksymalnie ok. 5-6 probek na
okres, tak wiec przebieg jest wyraznie znieksztatcony. Napiecie wyjsciowe potrafi osiggnaé
zadang wartos¢ w czasie okoto 10 s, nawet jesli wymagana jest zmiana o kilka woltow.

Aby wygtadzié¢ przebieg napiecia wyjsciowego, uzytkownik moze dotaczy¢ wtasny filtr na
wyjéciu napieciowym. Pomiedzy urzadzeniem a oscyloskopem zostal na probe wpiety filtr
aktywny model 3202R firmy Krohn-Hite, przedstawiony na rysunku Pozwolito to na
znaczng poprawe ksztattu przebiegu, szczegdlnie przy najwyzszej czestotliwosci; zauwa-
zalny jest jednak niewielki spadek amplitudy. Filtr zostal ustawiony na dolnoprzepustowy

z czestotliwoscia granicza rowna 20 kHz.

63

Dawid Najda

RIGOL STOF (. F 1.68U

-

WEEE 1.06U

Rys. 4.7: Panel przedni filtra model 3202R firmy Krohn-Hite

4.3 Przyktladowe generatory — podstawowe sygnaly

Nastepnie zostaly przetestowane generatory funkcyjne. Wyjscie napieciowe zostato pod-
taczone do oscyloskopu, w celu wykonania pomiaréw. Ponizej przedstawiony jest obiekt
ustawien zawierajacy kilka testowanych generatorow oraz zadanie, ktére byto odpowie-
dzialne za obstuge. Wszystkie przebiegi maja okres 1ms oraz amplitude 3V. Przebieg
prostokatny ma wypelnienie 50%. Przebieg trojkatny jest symetryczny, zas$ pitoksztaltny

— przechylony, z pionowym zboczem opadajacym.

"generators": [

[un

2 [{"A": 3, "S": {"WF": "Sine", "T": 100000}}],

3 [({"a": 3, "S": {"WF": "Square", "T": 100000, "D": 50000}}],

4 [({"A": 3, "S": {"WF": "Triangle", "T": 100000, "P": 25000}}],
5 [{"A": 3, "S": {"WF": "Triangle", "T": 100000, "P": 50000}}],

6]

Listing 4.5: Przetestowane generatory

64

1

2

3

Rozdziatl 4. Kalibracja i testy urzadzenia

LOOP 20000;
AOGEN 1 O;
DELAY 25;

END;

Listing 4.6: Zadanie stuzace do generowania sinusoid

Wszystkie podstawowe przebiegi sa generowane zgodnie z zalozeniami.

RIGOL T°Dr 1.6281)

L

MEET 1.06U

Rys. 4.8: Przebieg sygnatu sinusoidalnego

RIGOL T°Dr 1.381

ZEED 1,060 [

Rys. 4.9: Przebieg sygnatu prostokatnego

65

Dawid Najda

RIGOL STOF 1.38U

MEEED 1.06U (3

Rys. 4.10: Przebieg sygnatu tréjkatnego

RIGOL T°Dr e F 1.381

W

ZEED 1,060 [

Rys. 4.11: Przebieg sygnatu pitoksztattnego

Nastepnie sprawdzony zostat przyktadowy przebieg, bedacy suma dwoch przebiegéw pro-
stokatnych, przedstawiony w punkcie |3.7.3] Na drugim rysunku wystepuje w wersji prze-
filtrowanej wspomnianym wczesniej filtrem 2302R ustawionym na dolnoprzepustowy z

czestotliwodcig graniczna 100 Hz.

66

Rozdziatl 4. Kalibracja i testy urzadzenia

RIGOL T°C SZ2Bmb)

MEEEE SEEML [

[HEFEE SEEmL) =] Time 18 .68

Rys. 4.13: Przebieg funkcji symulujacej prosty inwerter po przefiltrowaniu

Finalnie, przetestowany zostal generator szumu — Random. Dodatkowo, na drugim kanale
zostal przedstawiony ten sam sygnat, lecz po przefiltrowaniu z dwoma réznymi czestotli-

wosciami granicznymi.

RIGOL STOP

CHiz= 1.86U0F MIEEm 1.660 L BE8ms OH-2 L BEEms

Rys. 4.14: Przebieg sygnatu losowego i po lekkim przefiltrowaniu

67

4

5

Dawid Najda

RIGOL STOF F a.68a.

CHi= 1.86U0F MaEE 1.660 Time 3.888 *=2 BEEmMS

Rys. 4.15: Przebieg sygnatu losowego i po mocniejszym przefiltrowaniu

Przebieg Swiergotowy trwa petna sekunde i zmienia si¢ od 1 Hz do 100 Hz. Zostat on zmie-
rzony poprzez wpiecie wyjscia do wejécia urzadzenia, zeby w prosty sposéb przechwycié

catosé¢ sygnatu.

"generators": [
({ "a": 3, "s": {"WF": "Chirp", "T": 1000000, "FS": 1 * le-6, "FD":
~ 99 * le-6} }],
[({ "A": 3, "S": {"WF": "ChirpLog", "T": 1000000, "FS": 1 * le-6,
-~ "FR": 100}, }I1,

Listing 4.7: Przetestowane generatory sygnatu swiergotowego

AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
LOOP 10000;

AOGEN 1 O;

ATIRDF 1 1;

DELAY 100;

¢ END;

Listing 4.8: Zadanie generujace i mierzace sygnaty

68

Rozdziat 4. Kalibracja i testy urzadzenia

0.0 0.2 0.4 0.6 0.8 1.0

Rys. 4.16: Przebieg sygnatu swiergotowego

2.0 A ﬂ H
1.5 4 ﬂ
1.0

0.5 4

0.0

—0.5 4 1

-1.0 4
-1.5 4 U
2.0 u

0.0 0.2 0.4 0.6 0.8 1.0

Rys. 4.17: Przebieg sygnatu $wiergotowego logarytmicznego

69

Dawid Najda

4.4 Odpowiedz czestotliwoSciowa wejScia napiecio-

wego

4.4.1 Badanie sygnalem sinusoidalnym

Aby okresli¢ rzeczywiste mozliwosci urzadzenia, zostat przeprowadzony test odpowiedzi
czestotliwosciowej wejsé. Wyjscie napieciowe zostalo podtaczone do jednego z wejs¢ na-
pieciowych. Petny kod programu odbierajacego i przetwarzajacego pomiary dostepny jest
w dodatku [A.4.1l

Na wyjscie zostal zadany sygnal sinusoidalny, gdzie czestotliwo$¢ byta zwiekszana dwu-
krotnie za kazdym powtérzeniem programu. Jego napiecie szczytowe to ok. 3V, za$ war-
tos¢ RMS zostala zmierzona miernikiem UT58D jako minimalnie wieksza niz teoretyczna,

tj. 2.22 V. Ponizej jest przedstawione zadanie odpowiedzialne za generacje¢ i pomiary:

AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
LOOP 20000;

AQOGEN 1 O;

AIRDF 1 1;

DELAY 50;
END;

Listing 4.9: Zadanie stuzace do badania odpowiedzi czestotliwoSciowe;j

Kazdy przebieg zostal zmierzony przez urzadzenie i wyliczona zostata jego wartosé¢ sku-
teczna napiecia. Nastepnie przeliczono ja na decybele wzgledem sygnatu wejsciowego. Sa
one przedstawione na rysunkach nizej.

Do wzoru na odpowiedz amplitudowsg prostego filtru dolnoprzepustowego pierwszego stop-
nia wstawiono zmierzone czestotliwosci i wzmocnienia i za pomoca biblioteki SciPy algo-

rytmem minimalizacji zostata wyznaczona czestotliwos¢ graniczna f..

2
G =20lg % :—10lg(1+<ff>)
() c

(&

70

Rozdziat 4. Kalibracja i testy urzadzenia

Odpowiedz czestotliwosciowa

01 6800060 — -3 0OED — 0 00D - g ® Pomiar
—=- Dopasowanie

G [dB]

T T T T T T
10° 10! 102 10° 10* 10°
f [Hz]

Rys. 4.18: Punkty pomiarowe wraz z dopasowana funkcja

Czestotliwo$¢é graniczna zostala wyznaczona na okoto 5765 Hz. Tak niska czestotliwosé
graniczna wynika z kilku kwestii: recznej budowy na plytce uniwersalnej (a wiec nie-
zoptymalizowanych $ciezek), duzego rozmiaru dzielnikéw i przekaznikéw oraz wysokiej
rezystancji wejsciowej (przez co nawet minimalna pojemno$é parazytowa mocno ograni-

cza czestotliwose).

4.4.2 Badanie sygnalem $wiergotowym

W celu weryfikacji, eksperyment zostal powtérzony uzywajac sygnatu Chirp. W ciagu 10
sekund przechodzi on od zera do 10 kHz, tak wiec w tym przypadku czas i czestotliwosé
sa réwne (pomijajac rzedy wielkosci). Wizualnie z wykresu zostata odnaleziona amplituda
mniejsza /2-krotnie od maksymalnej i zaznaczona jej czestotliwosé. Wynik jest zblizony

do poprzedniej metody.

Rys. 4.19: Amplituda pomiaréw sygnaltu swiergotowego w funkcji czasu/czestotliwosci

71

Dawid Najda

4.5 Eksperyment 1 — wyznaczenie charakterystyk
tranzystora BJT

Zostaly przetestowane trzy charakterystyki statyczne tranzystora bipolarnego. Sa to: wej-
Sciowa, przejsciowa i wyjsciowa. Badania te zostaly powtérzone dla dwodch tranzystordw:
2N3904 oraz 2N3055.

Emiter tranzystora jest potaczony z masa. Do bazy zostato podtaczone wyjscie pradowe
oraz wejscie napieciowe. Kolektor zostat zasilony z wyjscia napieciowego poprzez wej-
Scie pradowe. W ten sposéb znamy (poprzez zadawanie lub mierzenie) wszystkie cztery
potrzebne wielkos$ci — prad bazy, napiecie baza-emiter, prad kolektora, napiecie kolektor-
emiter. Schemat potaczen wykorzystany w celu przeprowadzenia do$wiadczenia jest przed-

stawiony ponizej.

Ic/x_?

Ib

\

Uce

Ube

N N

Rys. 4.20: Schemat uktadu uzytego do przeprowadzenia doswiadczen

4.5.1 Badanie charakterystyki wejSciowej tranzystora

Do wyznaczenia tej charakterystyki nalezy dla kilku wartosci Ucp przedstawi¢ przebieg
zaleznosci Uggp od Ig. W tym celu zostal stworzony program w jezyku Python, ktory
werywa ustawienia, zapisuje pomiary i przetwarza je. Zawiera on tez zadanie i obiekt ge-
neratora. Wpisujac wartos¢ zmiennej Uce mozemy w prosty sposéb ustawiaé generowane
przez zadanie napigcie kolektor-emiter. Urzadzenie wymusza przez baze liniowo narasta-
jacy prad w przedziale 0—1 mA i mierzy napiecie baza-emiter. Pomiary te zostaja nastepnie

zapisane do pliku. Ponizej przedstawione jest zadanie, za$ pelny kod zarzadzajacy odbio-

72

-

»

w

-

»

w

1

2

Rozdziatl 4. Kalibracja i testy urzadzenia

rem i analiza pomiaréw dostepny jest w dodatku [A.4.2]

AOVAL 1 {Uce};
AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
LOOP 1000;
AOGEN 2 0;
AIRDF 1 50;
DELAY 1000;
END;

4.5.2 Badanie charakterystyki przejSciowej tranzystora

Do wyznaczenia tej charakterystyki nalezy dla kilku wartosci Ugp przedstawi¢ przebieg
zaleznosci I od Ig. W tym celu zostat lekko zmodyfikowany program oraz zadanie. Wpi-
sujac wartos¢ zmiennej Uce mozemy w prosty sposob ustawiaé¢ napiecie kolektor-emiter.
Urzadzenie wymusza przez baze liniowo narastajacy prad w przedziale 0—1 mA i mierzy
prad kolektora. Pomiary te zostaja nastepnie zapisane do pliku. Ponizej przedstawione

jest zadanie, za$ kod zarzadzajacy odbiorem i analizg pomiaréw dostepny jest w dodatku

A43

AOVAL 1 {Uce};
AIRNG 4 MAX; AIEN; DELAY 100000; RSTTM;
LOOP 1000;
AOGEN 2 0;
AIRDF 4 50;
DELAY 1000;
END;

4.5.3 Badanie charakterystyki wyjSciowej tranzystora

Do wyznaczenia tej charakterystyki nalezy dla kilku wartosci Ig przedstawi¢ przebieg
zaleznosci I od Usg. W tym celu zostat lekko zmodyfikowany program oraz zadanie.
Whpisujac wartos¢ zmiennej Ib mozemy w prosty sposob ustawia¢ prad bazy. Urzadzenie
zasila kolektor liniowo narastajacym napieciem w przedziale 0-10V i mierzy prad kolek-
tora. Pomiary te zostaja nastepnie zapisane do pliku. Ponizej przedstawione jest zadanie,

za$ kod zarzadzajacy odbiorem i analiza pomiaréw dostepny jest w dodatku [A.4.4]

AQVAL 2 {Ib};
ATRNG 4 MAX; AIEN; DELAY 100000; RSTTM;

73

Dawid Najda

3 LOOP 1000;

4 AQOGEN 1 O;
5 ATIRDF 4 50;
6 DELAY 1000;
7 END;

4.5.4 Wykresy charakterystyk tranzystoréw 2N3904 i 2N3055 wy-

znaczone za pomocg prototypu bloku wejsé-wyjsé

Zbadane zostaly dwa tranzystory: 2N3904 [8] oraz 2N3055 [1]. Réznia si¢ one parametrami,
co wida¢ tez na charakterystykach. Rezultaty wszystkich pomiaréw znajduja sie ponizej,
szes¢ rysunkow przedstawiajacych trzy charakterystyki obu tranzystorow.

Jedyna nietypowos¢ dostrzezona w zmierzonych charakterystykach to ksztatt charaktery-
styk przejsciowych. W tranzystorze 2N3904 wystepuje wyrazne zgiecie, co oznacza zmniej-
szenie wzmocnienia pradowego. Jest to jednak mozliwe do wyttumaczenia na podstawie
danych producenta [8] — na rysunku [4.21] (Fig. 15 w oryginalnym dokumencie) mozna
zauwazy¢ spadek wzmocnienia pradowego, wystepujacy powyzej pradu kolektora 20 mA,
nawet dwu- czy trzykrotny. Zaktadajac typowe wzmocnienie dla tego zakresu pradu okoto
100, spadek wystepuje przy pradzie bazy 0.2 mA, czyli tak jak na wykresach przedstawia-

jacych przeprowadzone pomiary.

_ 20 T T TT I
E T)=+125°C = Vee=10V —
2 " ™~
e o .
Z 10 — +25°C o ~
(=] | — -
= = | S
= 07 = — | ~
N

g 05 et -55°C \\
= — e

et o Ty
£ 03 T \‘\ AN
§ // \\
2 02 N
: NN

01 N

0.2 0.3 05 07 1.0 20 3.0 50 70 10 20 30 50 70 100 200
Ig, COLLECTOR CURRENT {mA)

=

Rys. 4.21: Zalezno$¢ wzmocnienia od pradu kolektora tranzystora 2N3904 [8]

74

Rozdziat 4. Kalibracja i testy urzadzenia

Ube [V]

Ube [V]

Charakterystyka Ube(lb) dla réznych Uce [V]

0.8 - 0.8 e
0.6 - 0.6 1
2 0.4 1
0.4 2
=1
Uce=1
0.2 4 — Uce=3
0.2 —— Uce=0 — Uce=5
—— Uce=0.1 — Uce=7
— Uce=0.2 — Uce=8
—— Uce=0.5 0.0 1 — Uce=9
0.0 1 — Uce=1 —— Uce=10
O.III.‘ID 0.|25 0.:50 0.1."5 l.lII)O O.IIJD 0.|25 0.:50 O.IT-'E l.l.!]lU
Ib [mA] Ib [mA]

Rys. 4.22: Charakterystyka wejsciowa tranzystora 2N3904

Charakterystyka Ube(lb) dla raznych Uce [V]

0.7 4
0.6 1
0.5 -
044 —— Uce=0
— Uce=0.01
— Uce=0.02
0.3 7 —— Uce=0.05
— Uce=0.1
0.2 1 — Uce=0.2
—— Uce=0.5
0.1 - ! —— lUce=1
Uce=2
0.0 —— Uce=5
— Uce=10
0.0 0.2 0.4 0.6 0.8 1.0
Ib [mA]

Rys. 4.23: Charakterystyka wejSciowa tranzystora 2N3055

5

Dawid Najda

Charakterystyka Ic(lb) dla réznych Uce [V]

0.12 +

0.10 A

0.08 A

0.086

lc [A]

Uce=0
Uce=0.01
Uce=0.02

//

Uce=0.05
Uce=0.1
Uce=0.2

Uce=0.5
Uce=1
Uce=2

_—
/_,.,.-’-"‘"’

Uce=5
Uce=10

0.04

0.02

7z

\ \\\\ \\

0.00

VAN

0.0

0.2 0.

Jl‘

4 0.6
Ib [mA]

1.0

Rys. 4.24: Charakterystyka przejéciowa tranzystora 2N3904

Charakterystyka Ic(Ib) dla réznych Uce [V]

0.14

0.12

0.10 4

0.08

lc [A]

0.06

0.04 4

0.02 A

—— Uce=1

0.00

Uce=0

Uce=0.01
Uce=0.02

Uce=0.05
Uce=0.1
Uce=0.15

Uce=0.2
Uce=0.25

Uce=0.3
Uce=0.4

Uce=0.5

Uce=2
Uce=5

Uce=10

0.0

Ib [mA]

0.8 1.0

Rys. 4.25: Charakterystyka przejsciowa tranzystora 2N3055

76

Rozdziat 4. Kalibracja i testy urzadzenia

Ic [A]

Ic [A]

Charakterystyka Ic(Uce) dla roznych Ib [mA]

Ib=0.0 e

Ib=0.01]

Ib=0.02

Ib=0.05 / ——
Ib=0.1 / /.-l”f

0.12

0.10 1

Ib=0.2

Ib=0.5

Ib=1.0
-

0.06
0.04 //f""//
0.02 :F
0.00 -

0

Rys. 4.26: Charakterystyka wyjsciowa tranzystora 2N3904

0.08

2 4 6 8 10
Uce [V]

Charakterystyka Ic(Uce) dla réznych Ib [mA]

I
0.14 S—
—
0.12 [f//
l — b=0.0
0.10 — b=0.02 |
r —— Ib=0.05
0.08 — b=0.1
—— b=0.2
0.06 b=0.3
: —— Ib=0.5
f —— b=0.75
0.04 —— Ib=1.0 |
0.02
0.00 1
T
0 2 4 6 8 10
Uce [V]

Rys. 4.27: Charakterystyka wyjéciowa tranzystora 2N3055

7

2

3

5

Dawid Najda

4.6 Eksperyment 2 — wyznaczenie charakterystyk
diod péiprzewodnikowych

Do wyznaczenia tej charakterystyki zostaly uzyte program oraz zadanie bardzo podobne
do tych uzytych do wyznaczenia charakterystyki wejsciowej tranzystora. Urzadzenie wy-
musza przez diode liniowo narastajacy prad w przedziale 0—1 mA i mierzy napiecie anoda-
katoda. Pomiary te zostaja nastepnie zapisane do pliku. Ponizej przedstawione jest zada-

nie:

ATRNG 1 MIN; AIEN; DELAY 100000; RSTTM;

LOOP 1000;
AOGEN 2 O;
AIRDF 1 50;
DELAY 1000;
END;
Charakterystyka Uf(If) dla réznych diod
2.5 -
2.0 —— Blue
Green
—— PRed
= 151 f Yellow
=
m —— 1N4007
3 RHRP1560
1.0~ —— STPS3045C
—— T6KB
—— UF5408
0.5
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Ib [mA]

Rys. 4.28: Charakterystyki r6znych diod

Mozna zauwazy¢, ze najwiekszy spadek majg diody LED, tym wiekszy im wyzsza czesto-
tliwosé wytwarzanej fali Swiatta. Pod nimi jest mostek prostowniczy T6KB (ze wzgledu na

podwdjng diode miedzy - i +), pdzniej niewielka dioda krzemowa z popularnej rodziny

78

Rozdziatl 4. Kalibracja i testy urzadzenia

1N400X, po niej dioda prostownicza troche wyzszego pradu rodziny UF540X, za nig dioda
RHRP1560 w formie T0-220, za$ na samym koncu wyspecjalizowana dioda prostownicza
STPS3045C w formie TO-245 uzywana np. w zasilaczach komputerowych, z bardzo niskim

spadkiem oraz wysokim maksymalnym pradem.

4.7 Eksperyment 3 — wyznaczenie odpowiedzi czesto-

tliwosSciowej filtra

Zostala przetestowana odpowiedz czestotliwosciowa prostego filtra RC typu pasmowoprze-
pustowego. Do pomiaréw zostata dopasowana funkcja odpowiedzi — wyznaczona w ten
sposéb zostata czestotliwo$é graniczna. Dla poréwnania, filtr zostat réwniez zasymulo-

wany programem LTSpice.

R1 C2

v1i 2000 85n

AC1

Rys. 4.29: Schemat filtra oraz warto$ci komponentéw

Na podstawie wartosci komponentéw wyznaczono: czestotliwo$é graniczna czesci gor-
noprzepustowej fy = 93.1Hz, czestotliwos¢ graniczna czesci dolnoprzepustowej fr =
40.7 Hz. Oczywiscie to zaktada brak wzajemnego obcigzania obu czesci, co nie jest prawda,

jednak obliczone czestotliwosci stuza jako punkt odniesienia.

Badanie sygnatlem $wiergotowym

Pomiary zostaly dokonane w nastepujacy sposéb: na wejscie podany zostat sygnat swiergo-
towy o czestotliwosci zmieniajacej sie 1-10000 Hz. Zostat on doktadnie zmierzony. Nastep-
nie zadanie zostato wykonane ponownie, jednak tym razem mierzac wyjscie. Oba sygnaty

zostaly przetworzone transformata Fouriera w celu otrzymania spektrum, zas nastepnie

79

Dawid Najda

spektrum wyjscia zostato znormalizowane, dzielac je przez spektrum wejscia. Na podsta-
wie tego ilorazu mozna wyznaczy¢ charakterystyke czestotliwosciows zarowno amplitudy
jak i fazy.

Ponizej przedstawione jest zadanie dla urzadzenia, zas caly kod w jezyku Python odpo-
wiedzialny za transmisje ustawien i pomiaréw oraz obliczenia dostepny jest w dodatku
A.4.5

1 AIRNG 1 MIN; AIEN; DELAY 100000; RSTTM;
2 LOOP 2000000

3 AOGEN 1 O;

4 AIRDF 1 1;

5 DELAY 50;

6 END;

Przebieg sygnatow

U vl

T
0 20 40 60 80 100
f [Hz]

Rys. 4.30: Przebieg sygnatéw wejsciowego i wejSciowego

80

Rozdziat 4. Kalibracja i testy urzadzenia

Odpowiedz czestotliwosciowa

=10 -

—20 4

G [dB]

—30 -

—40

10° 101 102 1073
f [Hz]

90

45 A

=

—45
—90 -

10° 101 102 1073
f [Hz]

Rys. 4.31: Odpowiedz czestotliwo$ciowa amplitudy i fazy

Parametry oszacowane za pomoca dopasowania maja nastepujace wartosci: czestotliwo$é
graniczna czesci gérnoprzepustowej fy = 85.7 Hz, czestotliwo$é graniczna czesci dolno-

przepustowej fr = 30.2 Hz.

Badanie sygnalem sinusoidalnym

W celu weryfikacji, eksperyment zostal tez przeprowadzony w inny sposob. Dla pewnego
zbioru czestotliwosci zostaty wygenerowane fale sinusoidalne oraz wykonane pomiary wej-
Scia i wyjscia. Dla kazdej z czestotliwo$ci zostaty policzone wartosci napiecia RMS wejscia
i wyjécia w celu wyznaczenia ttumienia, zas uzywajac korelacji tych sygnatéw zostato wy-
znaczone przesuniecie w fazie. W kazdym przypadku zostata uzyta tylko druga potowa
pomiaréw, w celu ustabilizowania dziatania filtra.

Zadanie jest takie samo, jedynie zmienit sie generator; caly kod w jezyku Python odpo-

wiedzialny za pomiary i obliczenia dostepny jest w dodatku [A.4.6]

81

Dawid Najda

Odpowiedz czestotliwosciowa

1{]
o
5
5 —20 1
3{]
L T T T T T T T T
10° 101 102 1073
f [Hz]
90
45
= 07
=
45
9{]
T T T T T T L
10° 101 102 1073
f [Hz]

Rys. 4.32: Odpowiedz czestotliwo$ciowa amplitudy i fazy

Latwo zauwazy¢, ze wyznaczona charakterystyka jest bardzo podobna do tej z poprzed-

niego punktu. pomijajac zaktdcenia w wyznaczonej fazie przy wyzszych czestotliwosdciach.

Poréwnanie z symulacja

Filtr zostal tez przetestowany za pomocg programu LTSpice. Wyniki sa bardzo zblizone,
chociaz oczywiscie program nie zawiera zaktocen i innych btedéw pomiaru, przez co jego

wykres jest gtadszy.

Rozdziatl 4. Kalibracja i testy urzadzenia

V(n003)

-16dB
-20dB
-24dB
-28dB
-32dB—-~
-36dB
40dB
44dB

V(n003)

100Hz

Rys. 4.33: Odpowiedz czestotliwo$ciowa amplitudy i fazy

83

Dawid Najda

84

Rozdziat 5

Podsumowanie

W ramach niniejszej pracy magisterskiej stworzono uniwersalny blok wejs¢-wyjs¢ analo-
gowych i cyfrowych, sterowany za pomocg komputera PC. Przeanalizowano rodzaje prze-
twornikow i wybrano najbardziej odpowiednie do tego typu zastosowania. Zaprojektowano
tory wejs¢ i wyjs¢ oraz dobrano odpowiednie wzmacniacze i inne komponenty wspoma-
gajace. Sprawdzono rézne sposoby komunikacji z urzadzeniem, po czym wybrano taki,
ktéry spetnial wszystkie zatozenia projektu i oferowal najlepsza wydajnosé. Stworzono
prosty jezyk, pozwalajacy na sterowanie pracg urzadzenia przez uzytkownika. Zbudo-
wano prototyp bloku wejs¢-wyjs¢ z wykorzystaniem ptytki uniwersalnej. Mikrokontroler
oprogramowano tak, zeby zarzadzal uktadami znajdujacymi sie na ptytce oraz prowadzit
dwukierunkowa komunikacje z uzytkownikiem, w postaci przyjmowania ustawien oraz od-
sytania dokonanych pomiaréw. Przeprowadzono kalibracje dziatania toréw wejsé¢ i wyjsé.
Przetestowano wtasciwosci urzadzenia pod wzgledem charakterystyk czestotliwosciowych
oraz doktadnosci generowanych sygnatéw. Przeprowadzono przyktadowe eksperymenty
demonstrujgce mozliwosci zbudowanego uktadu oraz, w celu weryfikacji ich poprawnosci,
porownano wyniki do obliczen teoretycznych, symulacji lub danych z kart katalogowych.
Uzyskane wyniki testéw i eksperymentéw pozwalaja wnioskowaé, ze cel pracy zostal zre-
alizowany. Urzadzenie spelnia zatozenia projektowe, a wykonane eksperymenty wykazaty
jego funkcjonalnosé i precyzje. Spos6b montazu urzadzenia (ptytka uniwersalna) spowo-
dowal niestety, ze niektére komponenty nie osiggaja wydajnosci deklarowanej przez pro-
ducenta. Jest to ograniczona czestotliwosé zegara sterujaca komunikacja mikrokontrolera
z przetwornikami.

Mozliwy jest dalszy rozwoj pracy. Obejmuje on miedzy innymi zbudowanie urzadzenia na
dedykowanej ptytce drukowanej, z wykorzystaniem elementow o szerszym pasmie. Moz-
liwa jest rowniez optymalizacja oprogramowania, np. przez przetestowanie dziatania in-
nych metod synchronizacji niz powiadamianie z przerwan, rozszerzenie funkcjonalnodci,
jak implementacje generatoréw DDS oprocz funkeyjnych, czy klas pozwalajacych na stwo-
rzenie jakiego$s rodzaju wewnetrznego sprzezenia, jak kontrolery PID mierzace napigcie

wejsciowe i generujace napigcie wyjsciowe. Kolejna opcja rozwoju oprogramowania jest

85

Dawid Najda

rozszerzenie stworzonego jezyka o instrukcje i petle warunkowe, co pozwolitoby miedzy
innymi na implementacje funkcjonalnosci wyzwalania znanej z oscyloskopéw. Mogtoby
to wymagac¢ nowych instrukcji, np. do obstugi pewnego rodzaju jednostki arytmetyczno-

logiczne;j.

86

Bibliografia

2N3055(NPN), MJ2955(PNP) / Complementary Silicon Power Transistors. ON
Semiconductor Corp. 2005. URL: https ://www . onsemi . com/pdf /datasheet/
2n3055-d . pdf.

ADC DC Specifications. Microchip Technology, Inc. 14 list. 2023. URL: https://
microchipdeveloper.com/xwiki/bin/view/products/data-converters/adc-
specs/adc-dc/.

An overview of HI'TP. MDN Web Docs. 3 mar. 2024. URL: https://developer.
mozilla.org/en-US/docs/Web/HTTP/Overview.

James Bryant i Walt Kester. Data Converter Architectures. Analog Devices, Inc.
30 sierp. 2017. URL: http://www.analog.com/media/en/training-seminars/
design-handbooks/Data-Conversion-Handbook/Chapter3.pdf.

Compilers vs. Interpreters. lonos SE. 7 list. 2023. URL: https://www.ionos.com/

digitalguide/websites/web-development/compilers-vs-interpreters/.

Piyu Dhaker. Introduction to SPI Interface. Analog Devices, Inc. 2018. URL: https:
/ /www . analog . com /media/en/analog-dialogue / volume - 52 / number - 3/
introduction-to-spi-interface.pdf.

Digital Multimeter Measurement Fundamentals. NATIONAL INSTRUMENTS
CORP. URL: https : / / www . ni . com / en / shop / electronic - test -
instrumentation/digital -multimeters/dmm - measurement - fundamentals .
html.

General Purpose Transistors / NPN Silicon / 2N3903, 2N3904. ON Semiconductor
Corp. 2021. URL: https://www.onsemi.com/pdf/datasheet/2n3903-d.pdf.

Rop Gonggrijp. I2C Manager for ESP32. 2022. URL: https://github.com/ropg/
12c_manager.

How delta-sigma ADCs work. Texas Instruments Inc. Lip.—wrz. 2011. URL: https:
//www.ti.com/1lit/an/slyt423a/slyt423a.pdf.

HTTP Server - ESP32. Espressif Systems Inc. 10 sierp. 2023. URL: https: //
docs . espressif.com/projects/esp-idf/en/stable/esp32/api-reference/

protocols/esp http server.html.

87

https://www.onsemi.com/pdf/datasheet/2n3055-d.pdf
https://www.onsemi.com/pdf/datasheet/2n3055-d.pdf
https://microchipdeveloper.com/xwiki/bin/view/products/data-converters/adc-specs/adc-dc/
https://microchipdeveloper.com/xwiki/bin/view/products/data-converters/adc-specs/adc-dc/
https://microchipdeveloper.com/xwiki/bin/view/products/data-converters/adc-specs/adc-dc/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
http://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter3.pdf
http://www.analog.com/media/en/training-seminars/design-handbooks/Data-Conversion-Handbook/Chapter3.pdf
https://www.ionos.com/digitalguide/websites/web-development/compilers-vs-interpreters/
https://www.ionos.com/digitalguide/websites/web-development/compilers-vs-interpreters/
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.analog.com/media/en/analog-dialogue/volume-52/number-3/introduction-to-spi-interface.pdf
https://www.ni.com/en/shop/electronic-test-instrumentation/digital-multimeters/dmm-measurement-fundamentals.html
https://www.ni.com/en/shop/electronic-test-instrumentation/digital-multimeters/dmm-measurement-fundamentals.html
https://www.ni.com/en/shop/electronic-test-instrumentation/digital-multimeters/dmm-measurement-fundamentals.html
https://www.onsemi.com/pdf/datasheet/2n3903-d.pdf
https://github.com/ropg/i2c_manager
https://github.com/ropg/i2c_manager
https://www.ti.com/lit/an/slyt423a/slyt423a.pdf
https://www.ti.com/lit/an/slyt423a/slyt423a.pdf
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/protocols/esp_http_server.html

Dawid Najda

[12]

[13]

[14]

[15]

[22]

INA122 Single Supply, MicroPower INSTRUMENTATION AMPLIFIER. Texas In-
struments Inc. 2024. URL: https://www.ti.com/1it/ds/symlink/inal22.pdf.

Walt Jung, Walt Kester i James Bryant. Data Converter Support Circuits. Analog
Devices, Inc. 30 sierp. 2017. URL: https://www.analog.com/media/en/training-

seminars/design-handbooks/Data-conversion-handbook/Chapter?.pdf.

Walt Jung, Walt Kester, James Bryant, Joe Buxton, Wes Freeman, Ethan Bor-
deax, Johannes Horvath, Catherine Redmond i Eva Murphy. Hardware Design
Techniques. Analog Devices, Inc. 30 sierp. 2017. URL: https : / /www . analog .
com/media/en/training- seminars/design-handbooks/Data- conversion-—
handbook/Chapter9.pdf.

Walt Kester, Dan Sheingold i James Bryant. Fundamentals of Sampled Data Sys-
tems. Analog Devices, Inc. 30 sierp. 2017. URL: https://www.analog.com/media/
en/training - seminars / design - handbooks / Data - conversion - handbook /

Chapter2.pdf.
Key Parameters Of ADCs. Monolithic Power Systems, Inc. 14 list. 2023. URL:

https://www.monolithicpower . com/en/analog-to-digital - converters/

introduction-to-adcs/key-parameters-of-adcs.

LM4040 Precision Micropower Shunt Voltage Reference. Texas Instruments Inc.
2017. URL: https://www.ti.com/lit/ds/symlink/1m4040.pdf.

LMzx24-N, LM2902-N Low-Power, Quad-Operational Amplifiers. Texas Instruments
Inc. 2015. URL: https://www.ti.com/1it/ds/symlink/1m2902-n.pdf.

LT1014, LT1014A, LT1014D QUAD PRECISION OPERATIONAL AMPLI-
FIERS. Texas Instruments Inc. 2009. URL: https://www.ti.com/1lit/ds/symlink/
1t1014 . pdf!

MCP23008/MCP23508 8-Bit 1/O Expander with Serial Interface. Microchip Tech-
nology Inc. 2019. URL: https://wwl.microchip.com/downloads/en/DeviceDoc/
MCP23008-MCP23508-Data-Sheet-20001919F . pdf|

MCP3204,/3208 2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial
Interface. Microchip Technology Inc. 2008. URL: https://wwl.microchip. com/
downloads / aemDocuments /documents / APID / ProductDocuments / DataSheets /
21298e.pdfl

MCP4902/4912/4922 8/10/12-Bit Dual Voltage Output Digital-to-Analog Conver-
ter with SPI Interface. Microchip Technology Inc. 2010. URL: https: //wwl .
microchip.com/downloads/en/devicedoc/22250a.pdf.

88

https://www.ti.com/lit/ds/symlink/ina122.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter7.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter7.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter9.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter9.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter9.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter2.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter2.pdf
https://www.analog.com/media/en/training-seminars/design-handbooks/Data-conversion-handbook/Chapter2.pdf
https://www.monolithicpower.com/en/analog-to-digital-converters/introduction-to-adcs/key-parameters-of-adcs
https://www.monolithicpower.com/en/analog-to-digital-converters/introduction-to-adcs/key-parameters-of-adcs
https://www.ti.com/lit/ds/symlink/lm4040.pdf
https://www.ti.com/lit/ds/symlink/lm2902-n.pdf
https://www.ti.com/lit/ds/symlink/lt1014.pdf
https://www.ti.com/lit/ds/symlink/lt1014.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP23008-MCP23S08-Data-Sheet-20001919F.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP23008-MCP23S08-Data-Sheet-20001919F.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21298e.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21298e.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21298e.pdf
https://ww1.microchip.com/downloads/en/devicedoc/22250a.pdf
https://ww1.microchip.com/downloads/en/devicedoc/22250a.pdf

Bibliografia

23]

[31]

[32]

[33]

MCP6021/1R/2/3/4 Rail-to-Rail Input/Output, 10 MHz Op Amps. Microchip Tech-
nology Inc. 2023. URL: https://wwl.microchip.com/downloads/aemDocuments/
documents / MSLD / ProductDocuments / DataSheets / MCP6021 - Data - Sheet -
DS20001685 . pdf.

MCP606/7/8/9 2.5V to 6.0V Micropower CMOS Op Amp. Microchip Techno-
logy Inc. 2009. URL: https://wwl.microchip. com/downloads/aemDocuments/
documents/APID/ProductDocuments/DataSheets/11177f.pdf.

Dawid Najda. ESP32 MCP23008 expander driver/library. 2024. URL: https://
github.com/herhor67/MCP23008.

Dawid Najda. ESP32 MCP3z0x ADC driver/library. 2024. URL: https://github.
com/herhor67/MCP3X0X.

Dawid Najda. ESP32 MCPjxzx DAC driver/library. 2024. URL: https://github.
com/herhor67/MCP4XXX.

Robert Nystrom. Crafting Interpreters. 2021. URL: https : / /

craftinginterpreters.com/a-map-of-the-territory.html.

Don Peterson i B&K Precision. B&K Precision Function Generator Guide. B&K
Precision. URL: https://bkpmedia.s3.amazonaws.com/downloads/guides/en-

us/function-generator-awg-guide.pdf.

Eric Pena i Mary Grace Legaspi. UART: A Hardware Communication Protocol.
Analog Devices, Inc. 2020. URL: https://www.analog.com/media/en/analog-
dialogue/volume-54/number-4/uart-a-hardware-communication-protocol.
pdfl

SNxJHC125 Quadruple Buffers with 3-State Outputs. Texas Instruments Inc. 2021.
URL: https://www.ti.com/1lit/ds/symlink/sn74hc125.pdf.

Socket programming. IBM. 7 maj. 2024. URL: https://www.ibm.com/docs/en/i/
7 .b57topic=communications—-socket-programming,.

Chris Stephens. Embedded USB - a brief tutorial. Computer Solutions Ltd. URL:
https://www. computer-solutions.co.uk/info/Embedded tutorials/usb _

tutorial .htm.

ULN2801A, ULN2802A, ULN2803A, ULN2804A FEight Darlington arrays. STMi-
croelectronics N.V. 2018. URL: https://www.st.com/resource/en/datasheet/
uln2801a.pdf.

Jonathan Valdez i Jared Becker. Understanding the I2C Bus. Texas Instruments
Inc. 2015. URL: https://www.ti.com/lit/an/slva704/slva704.pdfl

WebSocket. Wikipedia. 16 maj. 2023. URL: https://pl.wikipedia.org/wiki/
WebSocket!

89

https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/11177f.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/11177f.pdf
https://github.com/herhor67/MCP23008
https://github.com/herhor67/MCP23008
https://github.com/herhor67/MCP3X0X
https://github.com/herhor67/MCP3X0X
https://github.com/herhor67/MCP4XXX
https://github.com/herhor67/MCP4XXX
https://craftinginterpreters.com/a-map-of-the-territory.html
https://craftinginterpreters.com/a-map-of-the-territory.html
https://bkpmedia.s3.amazonaws.com/downloads/guides/en-us/function-generator-awg-guide.pdf
https://bkpmedia.s3.amazonaws.com/downloads/guides/en-us/function-generator-awg-guide.pdf
https://www.analog.com/media/en/analog-dialogue/volume-54/number-4/uart-a-hardware-communication-protocol.pdf
https://www.analog.com/media/en/analog-dialogue/volume-54/number-4/uart-a-hardware-communication-protocol.pdf
https://www.analog.com/media/en/analog-dialogue/volume-54/number-4/uart-a-hardware-communication-protocol.pdf
https://www.ti.com/lit/ds/symlink/sn74hc125.pdf
https://www.ibm.com/docs/en/i/7.5?topic=communications-socket-programming
https://www.ibm.com/docs/en/i/7.5?topic=communications-socket-programming
https://www.computer-solutions.co.uk/info/Embedded_tutorials/usb_tutorial.htm
https://www.computer-solutions.co.uk/info/Embedded_tutorials/usb_tutorial.htm
https://www.st.com/resource/en/datasheet/uln2801a.pdf
https://www.st.com/resource/en/datasheet/uln2801a.pdf
https://www.ti.com/lit/an/slva704/slva704.pdf
https://pl.wikipedia.org/wiki/WebSocket
https://pl.wikipedia.org/wiki/WebSocket

Dawid Najda

[37) What is HTTP? Cloudflare, Inc. URL: https://www.cloudflare.com/en-gb/
learning/ddos/glossary/hypertext-transfer-protocol-http/.

90

https://www.cloudflare.com/en-gb/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://www.cloudflare.com/en-gb/learning/ddos/glossary/hypertext-transfer-protocol-http/

Dodatki

91

Dodatek A

Dokumentacja techniczna

A.1 Oprogramowanie

Program korzysta z biblioteki ropg\i2c_manager|9], ktéra zastepuje domyslny interfejs
I12C, daje bezpieczenstwo dla uzywania wielowatkowego i inne korzysci.

Konfiguracja SPI wymaga tylko podania numeréw GPIO linii MOSI, MISO i CLK oraz flagi
odpowiedzialnej za oznaczenie mastera. Konfiguracja I2C rowniez wymaga podania nume-
row GPIO0, ale dla linii SDA i SCL; poza tym cz¢stotliwosci zegara oraz wlaczenia rezystoréw

pull-up.

A.2 Klasy

W przypadku obstugi elementéw ktore moga sie powtarzac, zostaty stworzone odpowied-
nie klasy. Sa to np. przetworniki lub ekspandery. Oczywiscie nie jest to jedyne zastosowanie

klas w projekcie.

A.2.1 Obstluga przetwornika A /C

Do obstugi przetwornika analogowo-cyfrowego zostata stworzona biblioteka (z potaczenia
i modyfikacji kilku istniejacych otwarto-zrédtowych bibliotek) [26]. Klasa odpowiedzialna,
za to jest szablonem — w celu mozliwosci obstugi réznych przetwornikow tej rodziny.

Najpierw zdefiniowano enumeracje, okreslajace jego parametry: liczbe kanaléw wejscio-
wych mcp_adc_channels_t, liczbe bitéw mcp_adc_bits_t, oraz typ wyjscia (ze znakiem

lub bez) mcp_adc_signed_t. Te enumeracje sa uzywane przy tworzeniu szablonéw.

1 template <mcp_adc_channels_t C, mcp_adc_bits_t B, mcp_adc_signed t S =
— MCP_ADC_DATA_UNSIGNED>

2 class MCP3xxx

s {

93

4

5

6

11

12

13

14

15

16

17

18

19

20

21

Dawid Najda

private:
spi_host_device_t spi_host;
gpio_num_t cs_gpio;
int clk_hz;
spi_device_handle_t spi_hdl;

public:
MCP3xxx (spi_host_device_t, gpio_num_t, int);
~MCP3xxx() ;

esp_err_t init();

esp_err_t deinit();

esp_err_t acquire_spi(TickType_t) const;

esp_err_t release_spi() const;
inline esp_err_t send_trx(spi_transaction_t &trx) const;
inline esp_err_t recv_trx(TickType_t timeout = portMAX DELAY) const;

inline out_t parse_trx(const spi_transaction_t &trx) const;

static spi_transaction_t make_trx(uint8_t, mcp_adc_read_mode_t);

Listing A.1: Szablon definicji klasy zarzadzajacej ADC

Klasa zawiera nastepujace zmienne, podawane w konstruktorze: uzyty host SPI (ESP32
posiada dwa), pin GPI0 odpowiadajacy za chip select — wlaczenie komunikacji z ukta-
dem, oraz czestotliwo$¢ zegara podczas komunikacji. Funkcja init () wykorzystuje po-
dane parametry, tworzy ‘urzadzenie’, zapisuje je do zmiennej spi_hdl oraz podtacza do
wybranego hosta.

W celu komunikacji z przetwornikiem, zostata stworzona statyczna metoda make trx.
Zwraca ona odpowiednio przygotowany obiekt reprezentujacy transakcje SPI — jest to
specjalna struktura, zawierajaca wysylane polecenie i dane oraz miejsce na odbierane
dane. Moze ona by¢ uzyta wiele razy, bez ponownego tworzenia, co poprawia wydajnosc.
W przypadku uzytego przetwornika A/C podaje sie 5 bitéw: 1 bit startowy, 1 bit odpo-
wiedzialny za wyboér trybu pomiaru oraz 3 bity wyboru wejécia. Komenda ta zostaje na
zadanie programu wystana do chipa. Nastepnie, przez 2 cykle zegara odpowiednie wejscie
jest probkowane. Finalnie, uruchamia sie sekwencyjna praca przetwornika, produkujac po
kolei 12 bitéw przez 12 cykli zegara.

Tak reprezentowang transakcje nalezy nastepnie wykona¢ za pomoca metody send_trx.

94

Dodatek A. Dokumentacja techniczna

Przekazuje ona dane do sterownika SPI, ktory obstuguje warstwe fizyczng. Aby poczekaéd
i odebra¢ dane, nalezy uzy¢ metody recv_trx. Zostaly one rozdzielone, poniewaz w ten
sposéb w miedzyczasie mozna wykonywac inny kod, zamiast spinowania bez celu. Jesli obie
zostang wykonane bez zwrdcenia btedu, mozna nastepnie odczytaé zmierzong wartosc,
zapisana w obiekcie transakcji, za pomoca metody parse_trx. Zwraca ona odczytany
pomiar jako liczbe catkowita, ze znakiem lub bez (zaleznie od typu przetwornika).
Metody acquire_spi oraz release_spi stuza do zajecia catego hosta SPI przez jedno
urzadzenie — poprawia to wydajno$¢, gdyz sterownik nie musi sprawdza¢ czy inne urza-
dzenia nie prébuja sie komunikowa¢ na tych samych liniach oraz nie musi przetaczaé
kontekstu.

1 using MCP3002 = MCP3xxx<MCP_ADC_CHANNELS_ 2, MCP_ADC_BITS_10>;

s using MCP3004 = MCP3xxx<MCP_ADC_CHANNELS 4, MCP_ADC_BITS_10>;
1+ using MCP3008 = MCP3xxx<MCP_ADC_CHANNELS 8, MCP_ADC_BITS_10>;

s using MCP3202 = MCP3xxx<MCP_ADC_CHANNELS 2, MCP_ADC BITS 12>;

s using MCP3204 = MCP3xxx<MCP_ADC_CHANNELS 4, MCP_ADC_BITS_12>;

o using MCP3208 = MCP3xxx<MCP_ADC_CHANNELS 8, MCP_ADC_BITS 12>;

10

11 using MCP3302 = MCP3xxx<MCP_ADC_CHANNELS 4, MCP_ADC_ BITS_ 13,
. MCP_ADC_DATA SIGNED>;

12 using MCP3304 = MCP3xxx<MCP_ADC_CHANNELS 8, MCP_ADC BITS 13,
—» MCP_ADC_DATA_ SIGNED>;

Listing A.2: Nazwane specjalizacje szablonu dla réznych uktadéw z rodziny MCP3xxx

A.2.2 Obsluga przetwornika C/A

Do obshugi przetwornika cyfrowo-analogowego zostata stworzona od zera biblioteka, ba-
zujaca na bibliotece dla ADC [27]. Sa one bardzo zblizone, gtéwna réznica to enumeracje
specjalizujace szablon oraz kierunek komunikacji.

Najpierw zdefiniowano enumeracje, okreslajace jego parametry: liczbe kanaléw wejscio-

wych mcp_dac_channels_t oraz liczbe bitow mcp_dac_bits_t.

1 template <mcp_dac_channels t C, mcp_dac_bits_t B>

2 class MCP4xxx;

95

10

11

12

13

14

Dawid Najda

Listing A.3: Szablon definicji klasy zarzadzajacej DAC

Wiegkszo$¢ metod jest nazwana tak samo i petni doktadnie te same funkcje. Jedyna réznica
wynika z kierunku przeptywu danych — nie odczytujemy zadnych informacji zwrotnych,
wiec metoda parse_trx znika. Zastapiona jest metodg write_trx, ktora nalezy wykonaé
przed wystaniem transakcji. Wpisuje ona dane do wystania do obiektu transakc;ji.

Dla wykorzystanego przetwornika C/A komenda sktada sie z 4 bitow: 1 bit wyboru kanatu,
1 bit wlaczajacy wewnetrzny bufor napiecia odniesienia, 1 bit wlaczajacy dodatkowe dwu-
krotne wzmocnienie, oraz 1 bit pozwalajacy na wylaczenie kanalu (wysoka impedancja,
ang. high-impendance, Hi-Z). Nastepnie przesytane jest 12 bitow reprezentujacych wartosé
cyfrowsg, ktora po ostatnim cyklu zegara zostaje wpisana rownolegle do pamieci przetwor-
nika i przekonwertowana na warto$¢ analogowa. Przetwornik ten nie wykorzystuje linii
MISO.

using MCP4801 = MCP4xxx<MCP_DAC_CHANNELS 1, MCP_DAC_BITS_8>;
using MCP4811 = MCP4xxx<MCP_DAC_CHANNELS 1, MCP_DAC_BITS_10>;
using MCP4821 = MCP4xxx<MCP_DAC_CHANNELS 1, MCP_DAC_BITS_ 12>;

using MCP4802 = MCP4xxx<MCP_DAC_CHANNELS 2, MCP_DAC_BITS_8>;
using MCP4812 = MCP4xxx<MCP_DAC_CHANNELS 2, MCP_DAC_BITS_10>;
using MCP4822 = MCP4xxx<MCP_DAC_CHANNELS 2, MCP_DAC_BITS_12>;

using MCP4901 = MCP4xxx<MCP_DAC_CHANNELS 1, MCP_DAC_BITS_8>;
using MCP4911 = MCP4xxx<MCP_DAC_CHANNELS 1, MCP_DAC_BITS_10>;
using MCP4921 = MCP4xxx<MCP_DAC_CHANNELS 1, MCP_DAC_BITS_12>;

using MCP4902 = MCP4xxx<MCP_DAC_CHANNELS 2, MCP_DAC_BITS_8>;
using MCP4912 = MCP4xxx<MCP_DAC_CHANNELS 2, MCP_DAC_BITS_10>;

s using MCP4922 = MCP4xxx<MCP_DAC_CHANNELS 2, MCP_DAC_BITS_12>;

Listing A.4: Nazwane specjalizacje szablonu dla réznych uktadéw z rodziny MCP4xxx

A.2.3 Obsluga ekspandera GPIO

Do obstugi ekspandera GPIO zostata stworzona biblioteka (po zmodyfikowaniu i zmoder-

nizowaniu innej dostepnej publicznie biblioteki) [25].

96

Dodatek A. Dokumentacja techniczna

1 class MCP23008

2

3

4

5

7

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

{

i2c_port_t port; // I2C NUM 0 or I2C NUM._1

uint8_t address; // Hardware address of the device

public:

uint8_t gpio = 0;

private:

enum class Register : uint8_t

{

};

IODIR =

IPOL =

0x00,
0x01,

GPINTEN = 0x02,

DEFVAL
INTCON

IOCON =

GPPU
INTF
INTCAP
GPIO
OLAT

public:
MCP23008(i2¢c_port_t p, uint8_t a =
~MCP23008() ;

esp_err_t

esp_err_t

esp_err_t

esp_err_t

esp_err_t

esp_err_t

/7

= 0x03,
= 0x04,
0x05,
0x06,
0x07,
= 0x08,
0x09,
0x0A,

init(bool out = false);
deinit();

set_pins(uint8_t val);

get_pins(uint8_t &val);

set_pinsQ;

get _pins(Q);

97

0b000) ;

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Dawid Najda

esp_err_t set_direction(uint8_t val);

esp_err_t set_input_polarity(uint8_t val);

esp_err_t set_interrupt_enabled(uint8_t val);

esp_err_t set_interrupt_control(uint8_t val);

esp_err_t set_default(uint8_t val);

esp_err_t set_config(bool s, bool d, bool o, bool i);

esp_err_t set_config(uint8_t val);

esp_err_t set_pullup(uint8_t val);

esp_err_t read_interrupt_flag(uint8_t &val);

esp_err_t read_interrupt_captured(uint8_t &val);

// Single bit manipulation
void set_bit(uint8_t b);
void clear bit(uint8_t b);
void flip_bit(uint8_t b);

private:
esp_err_t read_reg(Register reg, uint8_t &d);

esp_err_t write_reg(Register reg, uint8_t d);

Listing A.5: Definicja klasy zarzadzajacej ekspanderem GPIO

Klasa zawiera nastepujace zmienne, podawane w konstruktorze: uzyty port I2C (ESP32
posiada dwa), oraz 7-bitowy adres urzadzenia. Protokét ten nie posiada obiektéw reprezen-
tujacych urzadzenia, kazda komenda jest catkowicie niezalezna. Funkcja init () pozwala
wiec jedynie na szybkie ustalenie kierunku wszystkich pinéw.

Uktad posiada kilka rejestrow, ktérych adresy sa wypisane w enumeracji. Prywatne me-
tody read_reg i write_reg stuza do wysytania polecen po I2C, tzn. na odpowiednim
interfejsie przesyta kierunek komunikacji, adres urzadzenia, adres rejestru i finalnie jego
wartos¢. Sterownik nastepnie wysyla sygnatl zegara i poszczegdlne bity do odbiornika, lub
odczytuje produkowane przez niego dane.

Kilka stworzonych metod pozwala na ustawienie kierunku pinéw (wejscia lub wyjscia), od-
czyt wartosci, ustawianie wartosci, wtgczanie przerwan, zmiane polaryzacji i inne, rzadziej

uzyteczne funkcje uktadu.

98

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

Dodatek A. Dokumentacja techniczna

A.2.4 Odczytywanie ustawien

Dane dotyczace ustawien sa przesylane w formacie JSON. Aby unikngé¢ kilkukrotnego
kopiowania danych i niepotrzebnego zuzycia pamieci (najpierw dane trafiaja przez serwer,
a wiec gniazdo do wewnetrznego bufora, potem z bufora sa kopiowane do wtasnego bufora,
skad sa parsowane przez biblioteke na strukture obiektu JSON) zostata stworzona specjalna
klasa. Wyposazona jest ona w dwa interfejsy, jeden wspétpracuje z parserem JSON, drugi
z serwerem /gniazdem. Posiada malty wewnetrzny bufor oraz rozmiar wpisanych danych i
obecng pozycje.

Parser JSON dopuszcza kilka sposobow podania ciggu znakéw. W tym przypadku uzy-
teczny jest ten korzystajacy z iteratorow i wlasnie w takim stylu zostat stworzony inter-
fejs. Kazdy iterator posiada wskaznik do obiektu do ktérego nalezy (istnieje tylko jeden
unikalny iterator dla kazdego obiektu). Odczytuje on po kolei znaki z bufora rodzica, az
do wyczerpania. Wtedy wywoluje metode recv ktora pobiera nowe dane z gniazda do bu-
fora. Jesli nowe dane nie istnieja — proces konczy sie. Jesli gdziekolwiek wystapi btad, jest
on zapisywany do pézniejszego sprawdzenia. Iterator koncowy to specjalny przypadek;
taki, ktéry nie posiada rodzica. To do niego porownywane sa te zwykte, wraz ze specjalng

implementacja kilku mozliwych kombinacji (operator==).

class SocketReader

{

static constexpr int BUF_SIZE = 1024;
public:

esp_err_t err = ESP_OK;
private:

char buffer[BUF_SIZE];
size_t datalen = 0;
size_t ptr = O;
httpd_req_t *req;

void recv()

{
int ret = httpd_req_recv(req, buffer, BUF_SIZE);

if (ret < 0) // error
{
err = ret;

return;

99

Dawid Najda

22 }

23 datalen = ret;

24 ptr = 0;

25 }

26

27 public:

28 SocketReader (httpd_req t *r) : req(r)
29 {}

30 ~SocketReader() = default;
31

32 class iterator;

33

32 public:

35 iterator begin()

36 {

37 recv();

38 return iterator(this);
39 }

40

" iterator end()

12 {

13 return iterator(nullptr);
14 }

s}

Listing A.6: Kod klasy SocketReader shuzacej do odczytu przesytanych danych fragmen-
tami

1 class iterator

2 {

3 friend class SocketReader;

4

5 public:

6 using iterator_category = std::input_iterator_tag;
7 using value_type = char;

8 using difference_type = std::ptrdiff_t;

9 using pointer = char x*;

10 using reference = char &;

100

Dodatek A. Dokumentacja techniczna

12 private:

13 SocketReader *parent;

14

15 iterator(SocketReader *p) : parent(p) {}

16

17 public:

18 ~iterator() = default;

19

20 public:

21 char operator*() const

22 {

23 assert(parent->ptr < parent->datalen);

24 return parent->buffer[parent->ptr];

25 }

26

27 iterator &operator++()

28 {

29 ++parent->ptr;

30 if (parent->ptr >= parent->datalen)

31 parent->recv();

32 return *this;

33 }

34

35 bool operator==(const iterator &other) const

36 {

a7 if (parent == other.parent) // If the same owner, then the same
38 return true;

39

40 if (other.parent == nullptr) // I am begin, other is end
41 return parent->ptr >= parent->datalen;

12

13 if (parent == nullptr) // I am end (who TF uses this order?)
4 return other.parent->ptr >= other.parent->datalen;
15

46 return false; // Completely different owners

a7 }

as };

101

10

1

2

3

4

Dawid Najda

Listing A.7: Kod wewnetrznej klasy iterator stuzacej jako interfejs dla parsera

A.2.5 Zadania

W celu implementacji wykonywania zadan musiaty zosta¢ stworzone klasy pozwalajace
na przechowanie odpowiednio zagniezdzonej struktury zadania w pamieci, klasy przecho-
wujace instrukcje, kody operacji, argumenty i inne dane.

7 gtéwnej klasy przechowujacej cate zadanie musi da¢ si¢ w prosty sposob pobierac¢ kolejne
instrukcje, zgodnie z przeptywem programu. Oznacza to, ze kazda klasa ktéra jakos prze-
chowuje instrukcje, musi implementowac taka metode. Do tego klasy te musza miec jakis
wewnetrzny stan, wskaznik, indeks, itp. aby pamig¢ta¢ obecng pozycje czy ilos¢ wykonan
dla petli. Z tego samego powodu, klasy te muszg by¢ wyposazone w funkcje pozwalajaca
na rekursywne zresetowanie catego programu w celu umozliwienia wielokrotnego wykony-
wania.

Najpierw zostalta stworzona enumeracja, zawierajaca dostepne operacje:

enum class 0OPCode : uint8_t

{
NOP = 0,
AIRDF, AIRDM, AIRDU,
AIEN, AIDIS, AIRNG,
AOVAL, AOGEN,
DIRD,
DOWR, DOSET, DORST, DOAND, DOXOR,
DELAY, GETTM,
};

Listing A.8: Enumeracja 0PCode istniejacych operacji

Potem stworzono strukture ktéra reprezentuje pojedyncza instrukcje, tzn. zawiera wyko-
nywang operacje, oraz opcjonalnie port ktorej ta operacja dotyczy oraz dowolny argument
w postaci liczby catkowitej lub zmiennoprzecinkowej. Zmienne zostaly utozone tak, aby

rozmiar klasy byt mozliwie maly — uwzgledniajac tzw. padding jest to 8 bajtow.

struct Instruction

{
0OPCode opc = 0PCode: :NOP;
uint8_t port = 0;

102

9

10

11

12

13

1

2

3

4

5

6

7

8

Dodatek A. Dokumentacja techniczna

union
{
uint32_t u = 0;
float f;
} arg;
};

using InstrPtr = const Instruction *;

constexpr InstrPtr nullinstr = nullptr;

Listing A.9: Klasa Instruction reprezentujaca instrukcje

Nastepnie zostaly utworzone klasy i typy, wymagane do implementacji zagniezdzo-
nych list, uzywanych do przechowywania petli i instrukcji. Wstepna deklaracja klasy
Loop, jej inteligentny wskaznik, oraz klasa Statement (wyrazenie) bazujaca na szablo-

nie std: :variant ktora moze by¢ albo instrukcja albo petla.

class Loop;
using LoopPtr = std::unique_ptr<Loop>;

using Statement = std::variant<std::monostate, Instruction, LoopPtr>;

Listing A.10: Deklaracje klas i typéw

Majac to, mozna bylo przystapi¢ do stworzenia klasy Scope (zasieg widocznosci) ktéra
przechowuje liste wyrazen oraz posiada indeks do nastepnego zwracanego wyrazenia. Po-
siada ona metode stuzaca do pobrania kolejnych instrukcji, metode sprawdzajaca czy
jakie$ instrukcje jeszcze pozostaja, metode do rekursywnego resetu, metode do restartu
(powrdt do poczatkowej instrukeji) oraz dwie metody do tworzenia — jedna dodaje petle,

druga dodaje instrukcje.

class Scope

{
std: :vector<Statement> statements;
mutable size_t index = 0;

public:

DEFAULT_CTOR (Scope) ;
DEFAULT_MV_CTOR(Scope) ;

103

10

11

12

13

1

2

3

4

10

11

12

13

14

Dawid Najda

InstrPtr getInstr() const;
bool finished() const;
void reset() const;

void restart() const;

Instruction& appendInstr(const Instruction& = Instruction());

Loop& appendLoop(size_t);

Listing A.11: Klasa Scope reprezentujaca liste operacji (zasieg widocznosci)

Klasa ta jest nastepnie uzyta do stworzenia klasy Loop (petla), ktéra przechowuje wlasny
Scope i zadang ilos¢ powtdrzen oraz posiada licznik iteracji. Ma ona podobny interfejs co
Scope: metode stuzaca do pobrania kolejnych instrukcji, metode sprawdzajaca czy jakie$
instrukcje jeszcze pozostaja, metode do rekursywnego resetu, metode do restartu (wyze-
rowanie iteracji) oraz metode pomocniczg — prosty getter — aby byto mozliwe wpisywanie

do niej instrukeji bez zbytniego duplikowania interfejsu poprzedniej klasy.

class Loop
{
Scope scope;
size_t max_iter = O;

mutable size_t iter = 0;
public:
Loop(size_t = 0);

~Loop () ;

InstrPtr getlInstr() const;

bool finished() const;

void reset() const;

void restart() const;

Scope &getScope() ;

Listing A.12: Definicja klasy Loop przechowujacej powtarzany Scope

104

10

11

12

13

14

15

16

Dodatek A. Dokumentacja techniczna

Finalnie powstata gléwna klasa Program reprezentujaca cate zadanie. Przechowuje ona
gtéwny Scope oraz implementuje metode ktéra parsuje tekst na drzewo i ewentualnie

zwraca btedy.

class Program

{

Scope scope;

public:
DEFAULT_CTOR(Program) ;
DEFAULT_MV_CTOR(Program) ;

bool parse(const std::string &, std::vector<std::string> &);

InstrPtr getlInstr() const;

void reset() const;

size_t size() const;
bool isValid() const;

Listing A.13: Definicja klasy Program przetrzymujacej zadanie

Metody stuzace do pobierania instrukcji sa proste, Scope pobiera obecne wyrazenie,
sprawdza czy jest instrukcja, jesli tak to zwraca ja. Jesli nie, czyli jest petla, wywotuje
metode klasy Loop. Klasa ta sprawdza ilos¢ iteracji i wywoluje metode wtasnego Scope.
Taka rekursja bedzie sie powtarza¢ az do dotarcia do zwyktej instrukcji.

Najciekawsza metoda jest metoda parse klasy Program, ktéra jest opisana ponizej.

A.2.6 Parser

Przygotowania do implementacji

Najpierw zostal stworzony typ, ktéry przechowuje pewng funkcje. Pozwala to oddzieli¢
parsowanie poszczegélnych instrukeji od samego kodu parsera. Funkcja ta przyjmuje liste
stow i ma zamieni¢ je na argumenty w podanym obiekcie klasy Instruction. Zwraca
warto$¢ prawda/falsz na podstawie tego, czy udalo sie poprawnie odczytaé wszystkie
argumenty.

Oprocz tego powstata struktura InstrLUTRow, ktory przechowuje dane potrzebne do par-

sowania instrukcji oraz informacje o niej. Sa to: kod operacji, tekstowa reprezentacja

105

10

11

12

18

Dawid Najda

operacji, tekstowa lista wymaganych argumentow, opis dziatania instrukcji, wymagana
ilo$¢ argumentow, oraz callback do funkcji parsujacej argumenty.

Finalnie, taczac wszystko w catos¢, stworzona zostata tablica, tzw. lookup table ktora za-
wiera tak sparametryzowane wszystkie dostepne instrukcje. Czesé instrukcji posiada te
same argumenty, wiec w celu duplikowania ich opiséw oraz funkcji parsujacych, zostaty
wykorzystane makra preprocesora, ktére moga by¢ wstawione samodzielnie lub w pota-

czeniu z innymi fragmentami tekstu czy funkcjami.

using ParseCb = std::function<bool(const std::vector<std::string>&,

— Instruction&)>; // in args, inout instr

struct InstrLUTRow

{
Interpreter: :0PCode opc;
const char *namestr;
const char *argstr;
const char *descstr;
size_t argcnt;
ParseCb parser;

+;

#define CB_HELP(COND) [](const std::vector<std::string>f4 args,

« Instructioné cs) { return (COND); }

#define READ_IP (try_parse_integer(args[0], cs.port) &% (cs.port >= 1 &4
& cs.port <= 4))

#define READ_OP (try_parse_integer(args[0], cs.port) &% (cs.port >= 1 &4
~ c¢s.port <= 2))

#define READ DO (try_parse_integer(args[0], cs.arg.u, 0) &4 (cs.arg.u <=
—~ 0b1111))

const std::vector<InstrLUTRow> CS_LUT = {
[...]
3

Listing A.14: Przygotowanie tablicy zawierajacej spis instrukcji i informacji o nich

106

11

13

Dodatek A. Dokumentacja techniczna

Wilasciwy parser

Metoda Program::parse przyjmuje dwa argumenty, jeden to ciag znakéw stanowiacy
program do odczytania, za$ drugi pozwala na zwrdcenie ewentualnych napotkanych bte-
dow. Najpierw stworzony jest stos, przechowujacy obecnyScope do ktoérego dopisywane
sa wyrazenia. W petli odczytywane sa kolejne linie (miedzy znakami ;), wyrazenie to
jest kopiowane i dzielone na stowa, przy okazji czyszczac biate znaki dookota. Jesli nie
ma zadnych stow - linia byta pusta, mozna pominaé¢. Pierwsze stowo jest przenoszone do
osobnej zmiennej, reszta listy to argumenty.

Nastepnie rozpoczyna sie faktyczne parsowanie wyrazenia. Najpierw sprawdzane sa dwa
specjalne przypadki, ktére wymagaja innego traktowania (nie sa instrukcjami). Jesli ope-
racja to LOOP, odczytywana jest pozadana ilosé¢ iteracji, nowa petla zostaje dodana do
obecnego poziomu, i do stosu Scopedéw zostaje dodany nowo utworzony, do ktorego beda
pisane dalsze wyrazenia. Jesli operacja to END, obecny Scope zostaje zamkniety i usuniety
ze stosu, tak wiec kolejne instrukcje bedg dopisywane do poprzedniego, nizszego poziomu.
W przeciwnym przypadku, mozna zatozy¢ ze operacja to instrukcja do sprzetu (albo jakis
nieistniejace polecenie). W tym momencie wykorzystywana jest wezesniej przygotowana
tablica opisujaca instrukcje. Sprawdzana jest nazwa operacji, jesli sie zgadza to zapisy-
wany jest odpowiedni OPCode, sprawdzana jest wymagana liczba argumentéw, i finalnie
uruchamiany jest parser argumentéw. Jesli w ktorymkolwiek momencie wystapit btad,
jest on zgtaszany do zwracanej listy. Tak samo w przypadku, jesli cata tablica zostanie
sprawdzona i operacja nie zostala znaleziona. Po odczytaniu catego programu, nastepuje
sprawdzenie czy wszystkie Scope zostaty zamkniete, jesli nie to rowniez zwracany jest

btad. Jesli nie zostal zwrocony zaden btad, program jest poprawny i moze zosta¢ wyko-

nany.

#define PARSE_ERR(rsn) do { \
prgValid = false; \
err.push_back("Stmt #"s + std::to_string(line) + ": " + rsn); \

} while (0)

static const char *expstx = "expected syntax: ";

#define PARSE_ERR_SNTX (syntax) PARSE_ERR(expstx + syntax)

bool Program::parse(const std::string& str, std::vector<std::string>&
< err)
{

prgValid = true;

107

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Dawid Najda

std: :stack<Scope *, std::vector<Scope *>> scopes;

scopes.push(&scope) ; // main

size_t beg 0;

size_t end 0;

size_t line = 0;

while (beg < str.length())
{

++line;

end = str.find(';', beg);
if (end == std::string: :npos)
str.length();

end

if (end - beg > 32) // sanity check

{
beg = end + 1;
PARSE_ERR("malformed (too long, max 32)!");
continue;

}

std: :string stmtstr = str.substr(beg, end - beg);
beg = end + 1;

std: :vector<std::string> args = str_split_on_whitespace(stmtstr);

if (args.empty()) // no command

continue;

std: :string cmd = std::move(args([0]);

args.erase(args.begin());
if (cmd == "LOOP")
{

size_t iters = 0;

if (args.size() != 1 || !try_parse_integer(args[0], iters))
PARSE_ERR_SNTX("LOOP <iterations (uint32)>");

108

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Dodatek A. Dokumentacja techniczna

Loop &1 = scopes.top()->appendLoop(iters);
scopes.push(&l.getScope());

}
else if (cmd == "END")
{
if (args.size() != 0)
PARSE_ERR_SNTX("END <no args>");
if (scopes.size() == 1)
PARSE_ERR("END: no Scope to end!");
scopes.pop() ;
}
else // regular command
{
Instruction cs;
for (const auto &lut : CS_LUT)
{
if (cmd == lut.namestr)
{
cs.opc = lut.opc;
if ((args.size() != lut.argent) || (lut.parser &&
— !lut.parser(args, cs)))
PARSE_ERR_SNTX(lut.namestr + ' ' + lut.argstr);
break;
}
}
if (cs.opc == 0PCode: :NOP)
PARSE_ERR("unknown command!");
scopes.top() ->appendInstr(cs) ;
}

scopes.pop(); // main

109

1

2

3

4

5

6

7

15

16

17

18

19

Dawid Najda

line = -1;
for (size_t i = 0; i < scopes.size(); ++i)
PARSE_ERR("Scope has not been terminated (missing END)!");

return prgValid;

Listing A.15: Kod metody Program: :parse odpowiedzialnej za konwersje z tekstu na
drzewo polecen

A.2.7 Generatory
Klasa Generator

W celu stworzenia generatorow DDS, stworzona zostata specjalna klasa Generator. Prze-
chowuje ona liste sktadowych sygnatéw, wraz z ich amplitudami. Posiada ona metode
stuzacag do dodawania sygnatéw oraz dwie metody do pobierania danych: jedna zwieksza
obecny numer prébki o jeden i generuje sygnat, druga zas pozwala na podanie arbitralnego

punktu czasowego.

class Generator

{
public:
using index_t = Signal::index_t;
private:
using Signals = std::vector<std::pair<float, SignalHdl>>;
Signals signals;
index_t current_step;
public:

DEFAULT_CTOR(Generator) ;
DEFAULT _MV_CTOR(Generator) ;

void add(float a, SignalHdl &&s)

{

signals.emplace_back(a, std::move(s));

110

21

22

23

24

25

26

27

28

29

30

1

2

3

4

Dodatek A. Dokumentacja techniczna

float get(index_t i)

{
current_step = 1i;
return calculate();
}
float forward()
{
++current_step;
return calculate();
}
private:

inline float calculate() const

{
float sum = O;
for (const auto &s : signals)
sum += s.first * s.second->get(current_step);
return sum;
}

Listing A.16: Kod klasy Generator uzywanej do produkcji przebiegéw

Klasa Signal i pomocnicze

Nastepnie zostata stworzona wirtualna klasa Signal, ktorej klasy dziedziczace generuja
kilka z najpopularniejszych przebiegéw. Implementuje ona interfejs do generowania, po-
mocnicza metode w celu konwersji z i do JSON oraz wtasna wersje sinusa (zamiana kata
na warto$¢), z minimalnie pogorszong dokladnoscia, ale duzo szybsza niz domy$lna im-

plementacja jezyka.

class Signal

{
friend SignalHdl;

protected:
static inline float ang to_sine(float ang) // Full sine cycle on <O,
— 1>, duplicated to negatives for simplicity

{

111

10

11

12

13

14

15

16

17

18

19

20

21

24

25

26

27

28

29

30

31

32

Dawid Najda

bool flip = std::signbit(ang)
ang = std::abs(ang);
if (ang > 0.5f)
{
ang —= 0.5f;
flip = !'flip;

float smpl = 16.0f * ang * (O
return flip 7 -smpl : smpl;

float bhskr
return flip 7 -bhskr : bhskr;

public:

using index_t = int32_t;

Signal() = default;
virtual ~Signal() = default;

virtual float get(index_t) const

{

return O;

}
virtual SignalType type() const

{
return SignalType::Virtual;

I

.5f - ang);

4.0f * smpl / (5.0f - smpl);

Listing A.17: Kod wirtualnej klasy Signal stuzacej do generowania podstawowych
ksztattéw fal

Do tego powstala klasa pomocnicza do przechowywania sygnatow. Nie wystarczyt zwykty
inteligentny wskaznik, gdyz do serializacji wymagane byto tez stworzenie funkcji fabryki,
ktora tworzy odpowiednia klase na podstawie podanego typu sygnahu, natomiast jest ona

po prostu jego wrapperem.

112

Dodatek A. Dokumentacja techniczna

1 class SignalHdl

2 {

3 using SignalPtr = std::unique_ptr<Signal>;
4 SignalPtr ptr;

¢ public:

7 DEFAULT_CTOR(SignalHdl);

s DELETE_CP_CTOR(SignalHdl);

9 DEFAULT _MV_CTOR(SignalHdl);

10

1 SignalHdl(SignalPtr &&p) : ptr(std::move(p)) {}

12

13 Signal &operator#*() const
14 {

15 return *ptr.get();

16 }

17 Signal *operator->() const
18 {

19 return ptr.getQ);

20 }

21 };

22
23 template <typename T>

24 SignalHdl make_signal(const json &j)

2 {

26 std: :unique_ptr<Signal> sp = std::make_unique<T>(j.get<T>());
27 return SignalHdl(std: :move(sp));

2 }

29

30 template <typename T, typename... Args>
31 SignalHdl make signal (Args &&...args)

s2 {

33 std: :unique_ptr<Signal> sp =

< std::make_unique<T>(std::forward<Args>(args)...);
34 return SignalHdl(std: :move(sp));

Listing A.18: Klasa SignalHdl do przechowywania klasy Signal oraz fabryki tejze

113

Dawid Najda

Klasy dziedziczace z Signal

Ponizej przedstawione sa kody klas odpowiedzialnych za generowanie poszczegdlnych

ksztattéw oraz manipulacje nimi.

1 class SignalConst : public Signal

2 {

s public:

4 SignalConst() = default;

5 ~SignalConst() = default;

6

7 float get(index_t) const override
8 {

9 return 1;

10 }

11 SignalType type() const override
12 {

13 return SignalType: :Const;

14 }

15 };

Listing A.19: Klasa SignalConst generujaca przebieg o statej wartosci

1 class Signallmpulse : public Signal

2 {

3 public:

4+ SignalImpulse() {}

5 ~SignalImpulse() = default;

6

7 float get(index_t i) const override
8 {

9 return i == 0;

10 }

1 SignalType type() const override
12 {

13 return SignalType::Impulse;

14 }

15 };

114

Dodatek A. Dokumentacja techniczna

Listing A.20: Klasa SignalImpulse generujaca impuls w czasie 0

1 class SignalSine : public Signal

2 {

3 index t T;

4

5 public:

6 SignalSine(index_t t = 1) : T(t) {}
7 ~SignalSine() = default;

8

9 float get(index_t i) const override

10

11

12

13

14

15

16

17

18

19

float ang = static_cast<float>(i) / T;

return ang_to_sine(ang);

SignalType type() const override

return SignalType: :Sine;

Listing A.21: Klasa SignalSine generujaca sinusoide o podanym okresie

1 class SignalSquare : public Signal

2 {

3 index_t T;
4 index_t D;
5

6 public:

7 SignalSquare(index_t t = 1, index_t d = 0) : T(t), D(d) {}
5 ~SignalSquare() = default;

10 float get(index_t i) const override
11 {
12 i=179%T;

115

Dawid Najda

13

14

16

17

19 };

3

return (i < D) 7 1 : 0;

SignalType type() const override

{

return SignalType: :Square;

Listing A.22: Klasa SignalSquare generujaca prostokat (typu PWM) o podanym okresie i
wypetnieniu

1 class SignalTriangle : public Signal

2 {

4

index_t T;

index_t P;

¢ public:
SignalTriangle(index_t t = 1, index_t p = 1) : T(t), P(p) {}
~SignalTriangle() = default;

10

11

12

13

14

15

16

17

18

19

20

21

22

float get(index_t i) const override

{

by

i=1i9 T;
if (i == 0) // to avoid division when P=0
return 0.0f;
if (i <= P) // rising pos edge
return static_cast<float>(i) / P;
if (i >=T - P) // rising neg edge
return static_cast<float>(i - T) / P;
// falling edge
return static_cast<float>(T / 2 - i) / (T / 2 - P);

SignalType type() const override

{

return SignalType::Triangle;

116

Dodatek A. Dokumentacja techniczna

Listing A.23: Klasa SignalTriangle generujaca trojkat, pite i posrednie o podanym
okresie i czasie szczytu

1 class SignalChirp : public Signal
2 {

3 index t T;

4 float FS;

5 float FD;

6

7 public:

8 SignalChirp(index_t t = 1, float fs = 0, float fd = 0) : T(t), FS(fs),
—~ FD(fd) {}

9 ~SignalChirp() = default;

10

1 float get(index_t i) const override

12 {

13 i %= T;

14 float fr = static_cast<float>(i) / T;

15 float phs = i * (FS + FD * fr); // 0.5f *

16 float ang = std::fmod(phs, 1.0f);

17 return ang_to_sine(ang);

18 }

19 SignalType type() const override

20 {

21 return SignalType: :Chirp;

22 }

23 T

Listing A.24: Klasa SignalChirp generujaca swiergot o podanym czasie, poczatkowe;
czestotliwoscei i zmianie

1 class SignalChirpLog : public Signal
2 {

3 index_t T;

4 float FS;

117

Dawid Najda

5

6

float FR;

7 public:

8

10
11
12
13
14
15
16
17
18
19
20
21
22

23

25 };

SignalChirpLog(index_t t = 1, float fs = 0, float fr = 0) : T(t),
— FS(fs), FR(fr) {}
~SignalChirpLog() = default;

float get(index_t i) const override

{
i%=T;
float fr = static_cast<float>(i) / T;
float phs = FS * T / std::log(FR) * (std::pow(FR, fr) - 1.0f);
float ang = std::fmod(phs, 1.0f);
return ang_to_sine(ang);

}

SignalType type() const override

{
return SignalType::ChirpLog;

}

Listing A.25: Klasa SignalChirpLog generujaca Swiergot zmieniajacy sie wyktadniczo
w czasie (liniowo w skali logarytmicznej) o podanym czasie, poczatkowej czestotliwosci i
mnozniku zmiany

1 class SignalRandom : public Signal

2 {

3 public:

4

5

6

10

11

SignalRandom() = default;
~SignalRandom() = default;

float get(index_t) const override

{

constexpr float mult = -1.0 / std::numeric_limits<int32_t>::min();
int32_t val = std::bit_cast<int32_t>(esp_random());

return static_cast<float>(val) * mult;

118

Dodatek A. Dokumentacja techniczna

12
13
14
15
16
17
18

19

20 };

X
SignalType type() const override
{
return SignalType: :Random;
X

friend void to_json(json &j, const SignalRandom &o) {}

friend void from_json(const json &j, SignalRandom &o) {}

Listing A.26: Klasa SignalRandom generujaca wartosci losowe w przedziale [—1,1)

1 class SignalDelay : public Signal

2 {

3 index t D;

4 SignalHdl S;

5

6 public:

7 SignalDelay(index_t d = 0, SignalHdl &&s = SignalHdl())
~ S(std::move(s)) {}

5 ~SignalDelay() = default;

9

10 DEFAULT_MV_CTOR(SignalDelay) ;

1

12 float get(index_t i) const override

13 {

14 if (1 < D)

15 return O;

16 return S->get(i - D);

17 }

18 SignalType type() const override

19 {

20 return SignalType: :Delay;

21 }

22 };

: D@,

Listing A.27: Klasa SignalDelay generujaca opdznienie innego sygnatu

119

1

2

3

4

10

11

12

13

14

15

16

17

18

19

5

6

7

8

10

11

12

13

14

15

Dawid Najda

class SignalAbsolute : public Signal

{
SignalHdl S;

public:
SignalAbsolute(SignalHdl &&s = SignalHd1()) : S(std::move(s)) {}
~SignalAbsolute() = default;

DEFAULT_MV_CTOR(SignalAbsolute);

float get(index_t i) const override
{
return std::abs(S->get(i));
+
SignalType type() const override

{
return SignalType: :Absolute;

};

Listing A.28: Klasa SignalAbsolute generujaca warto$¢ bezwzgledna innego sygnatu

class SignalClamp : public Signal

{
float L;
float H;
SignalHdl S;

public:
SignalClamp(float 1 = -1, float h = 1, SignalHdl &&s = SignalHdl())
—~ L(1), HM), S(std::move(s)) {}
~SignalClamp() = default;

DEFAULT_MV_CTOR(SignalClamp) ;

float get(index_t i) const override

{
return std::clamp(S->get(i), L, H);

120

16

18

19

21

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

21

Dodatek A. Dokumentacja techniczna

X
SignalType type() const override
{
return SignalType: :Clamp;
X

};

Listing A.29: Klasa SignalClamp generujaca inny sygnal ograniczony minimalng i
maksymalng wartoscig

class SignallLinearMap : public Signal

{
float A;
float B;
SignalHdl S;

public:
SignallLinearMap(float a = 1, float b = 0, SignalHdl &&s = SignalHdl())
~ : A(a), B(b), S(std::move(s)) {}
~SignallLinearMap() = default;

DEFAULT_MV_CTOR(SignalLinearMap) ;

float get(index_t i) const override
{
return A * S->get(i) + B;
}
SignalType type() const override

{

return SignalType: :LinearMap;

+;

Listing A.30: Klasa SignalLinearMap generujaca inny sygnal przetworzony przez funkcje
liniowag A-x + B

121

1

2

3

4

10

11

12

13

14

15

16

17

18

20

Dawid Najda

class SignalMultiply : public Signal

{
SignalHdl Si;
SignalHdl S2;

public:
SignalMultiply(SignalHdl &&sl = SignalHd1(), SignalHdl &&s2 =
< SignalHd1()) : Si(std::move(sl)), S2(std::move(s2)) {}
~SignalMultiply() = default;

DEFAULT_MV_CTOR(SignalMultiply);

float get(index_t i) const override

{

return S1->get(i) * S2->get(i);
}
SignalType type() const override

{
return SignalType: :Multiply;

};

Listing A.31: Klasa SignalMultiply generujaca iloczyn wartosci dwdch innych sygnatow

122

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Dodatek A. Dokumentacja techniczna

A.3 Przestrzenie nazw

W przypadku obstugi catego urzadzenia, nie zostata tworzona klasa, lecz odpowiednia
przestrzen nazw (ang. namespace). Ze wzgledu na fakt, ze istnieje tylko jedno “cate urza-
dzenie”, oraz “zmienne” wymagane do konstrukcji takiego obiektu tak naprawde sg sta-

tymi, pozwala to kompilatorowi na dodatkowa optymalizacje kodu.

A.3.1 Komunikacja miedzy watkami

Przestrzen nazw Communicator odpowiedzialna jest za zarzadzanie komunikacjg miedzy
dwoma rdzeniami/watkami — watek serwera HTTP oraz watek obstugujacy sprzet.

Interferjs stuzacy do takiej komunikacji jest przedstawiony ponizej:

namespace Communicator

{
constexpr size_t buf_len = 128 * 1024;
esp_err_t cleanup();
esp_err_t init(Q);
esp_err_t deinit();
esp_err_t time_settings(size_t);

bool write_4bytes(const int64_t &, const uint32_t &);

template <typename T>
bool write_data(const int64_t &, const T &);

etl: :span<char> get_read();

void commit read();

bool is_running();
bool has data();

void start_running();

void ask_to_exit();

bool should exit();

void confirm exit();

123

Dawid Najda

Listing A.32: Interfejs przestrzeni Communicator uzywanej do komunikacji miedzy
watkami

Zas jej implementacja posiada dodatkowo nastepujace zmienne:

etl: :bip_buffer_spsc_atomic<char, buf_len> bipbuf;

etl::span<char> current_read;

std::atomic_bool please_exit;

std::atomic_bool producer_running;

size_t time_bytes = 0;

size_t res wrt 4b = 0;

Listing A.33: Zmienne “prywatne” przestrzeni Communicator

Funkcja time_settings pozwala na ustawienie liczby bajtéw pomiaréw czasu. Kilka funk-
cji/szablonéw jest odpowiedzialnych za wpisywanie danych do bufora. Dwie funkcje stuza,
jako interfejs do odczytu danych z bufora. Ostatnia grupa funkcji pozwala na zarzadzanie
stanem watku interpretera. Funkcje is_running i has_data sprawdzaja status watku i
bufora; wraz ze startowaniem i zatrzymywaniem stanowia interfejs dla watku serwera.
Funkcje should_exit oraz confirm_exit to interfejs watku interpretera do zarzadzania
SWO0jg pracy.

W celu przechowywania danych zostata wykorzystana klasa bip_buffer biblioteki ETL w
wersji spsc — single producer, single consumer co pozwala na pozbycie si¢ mechanizméow
zabezpieczajacych dostep typu semafory czy mutex i oparcie na niepodzielnosci operacji
zapisu oraz odczytu — atomic. Przyspiesza to znacznie dziatanie oraz pozwala na dostownie
jednoczesng prace obu watkow. Nazwa bip_buffer jest skrétem od bipartite buffer — bufor
dwuczesciowy. Oznacza to, ze w zarezerwowanej pamieci znajduja sie jedna lub dwie
logiczne czedci. Kiedy pierwsza cze$é dotrze do korica pamieci (lub pozostaly fragment
jest niewystarczajacy), druga cze$¢ zostaje rozpoczeta na poczatku pamieci. Kiedy cata
pierwsza czesS¢ zostanie skonsumowana, druga cze$é¢ staje sie pierwszg i proces powtarza
sie. Taka reprezentacja pozwala na zapis i odczyt fragmentéw o dowolnej dtugosci, nawet
jesli nie zapelniaja réwno catej pamieci do konca. Odczyt wigkszego kawaltka pamieci jest
wymagany do przesytu danych ze wzgledu na optymalizacje (otoczka wiadomosci zajmuje
miejsce i czas), za$ dostep do wewnetrznej pamieci w celu unikniecia kopiowania ich przed

wystaniem.

124

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

Dodatek A. Dokumentacja techniczna

Funkcje piszace rezerwuja pozadanag ilos¢ miejsca, wstawiajg tam dane i potwierdzaja
zapis. Funkcje odczytujace pobierajg mozliwg ilo$¢ danych do odczytania, odczytuja je

(przesytaja) i potwierdzaja odczyt, co kasuje dane z bufora.

A.3.2 Serwer HTTP

WebServer (lub HTTP Server) to gotowy komponent w srodowisku ESP-IDF pozwalajacy
na szybkie, proste i wygodne uruchomienie serwera obshigujacego protokét HTTP na mi-
krokontrolerze. Automatycznie zajmuje sie on kodowaniem i dekodowaniem danych w obie

strony.

Funkcje pomocnicze

Zostata utworzona pomocnicza funkcja konwertujaca cigg znakoéow tzw. query przekazy-
wane w URL na stownik /mape w postaci klucz —wartosé. Odcezytuje ona query z wewnetrz-
nej pamieci dotyczacej danego zapytania, dzieli ja na pary, dzieli je na klucz i wartosé

(jesli mozliwe) i wpisuje do stownika.

auto parse_query(httpd_req t *r)
{
std: :map<std::string, std::string> ret;
size_t qr_len = httpd_req_get_url query_len(r) + 1;
std::string query(qr_len, '\0');
httpd_req get_url query_str(r, query.data(), qr_len);
query.erase(query.find('\0"));
size_t pos = 0;
do
{
size_t maxlen = query.find('&', pos); // find end of current param
if (maxlen == std::string: :npos)
maxlen = query.length();
size_t middle = query.find('=', pos); // find break of current
~ param
if (middle > maxlen) // no value, key only
{
std: :string key = query.substr(pos, maxlen - pos);
ret.emplace(std: :move(key), "");
}
else // key and value

{
std: :string key = query.substr(pos, middle - pos);

125

23

24

25

26

27

28

29

30

8

10

11

12

13

14

16

17

18

19

20

Dawid Najda

std: :string val = query.substr(middle + 1, maxlen - middle - 1);
ret.emplace(std: :move(key), std::move(val));
}
pos = maxlen + 1;
Y/
while (pos <= query.length());
// ret.erase("");

return ret;

Listing A.34: Funkcja parse_query tworzaca stownik parametrow

Konfiguracja i start serwera

Najpierw przedstawione jest tworzenie i konfiguracja serwera. W zmiennych przechowy-
wane sg wszystkie dostepne adresy, metoda dostepu do nich oraz funkcja odpowiedzialna
za przetworzenie zapytania. Funkcja uruchamiajgca startuje serwer i przypina wszystkie

te adresy do wykonania przez niego.

static constexpr httpd uri_t favicon uri = {
.uri = "/favicon.ico",
.method = HTTP_GET,
.handler = favicon_handler,
.user_ctx = nullptr,

};

static constexpr httpd_uri_t welcome uri = {
uri = n/n,
.method = HTTP_GET,
.handler = welcome_handler,

.user_ctx = nullptr,

};

static constexpr httpd_uri_t io_uri = {
.uri = "/io",
.method = HTTP_GET,
.handler = io_handler,

.user_ctx = nullptr,

126

24

25

26

27

28

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Dodatek A. Dokumentacja techniczna

static constexpr httpd_uri_t settings_uri = {
.uri = "/settings",
.method = HTTP_POST,
.handler = settings_handler,
.user_ctx = nullptr,

3
static httpd_handle_t server = nullptr;

esp_err_t start_webserver()

{
httpd_config t config = HTTPD_DEFAULT_CONFIG();

[...]

// Start the httpd server
ESP_LOGI(TAG, "Starting HTTP server on port: %d", config.server_port);

ESP_RETURN ON_ERROR(
httpd_start (&server, &config),
TAG, "Failed to httpd_start!");

ESP_LOGI(TAG, "Registering URI handlers...");

ESP_RETURN_ON_ERROR(
httpd_register uri_handler(server, &welcome uri),
TAG, "Failed to httpd_register uri_handler!");

ESP_RETURN ON_ERROR(
httpd_register uri_handler(server, &io_uri),
TAG, "Failed to httpd_register_uri_handler!");

ESP_RETURN_ON_ERROR(
httpd_register_uri_handler(server, &settings_uri),
TAG, "Failed to httpd_register_uri_handler!");

ESP_RETURN ON_ERROR(

httpd_register_uri_handler(server, &favicon_uri),
TAG, "Failed to httpd_register_uri_handler!");

127

Dawid Najda

61

62 }

return ESP_OK;

Listing A.35: Funkcja start webserver ustawiajaca i uruchamiajgca serwer oraz
zmienne pomocnicze

Przetwarzanie zapytan

Ponizej przedstawione sg funkcje przetwarzajace zapytania.

Najprostsza jest funkcja zwracajaca ikone — zawiera obrazek zakodowany jako bajty od

razu w pamieci i tylko wysyta je.

1 static esp_err_t favicon_handler (httpd_req_t *req)

2 {

4

httpd_resp_set_status(req, HTTPD_200);
httpd_resp_set_type(req, "image/x-icon");
httpd_resp_set_hdr(req, "Cache-Control", "max-age=31536000,

< immutable");

static constexpr char favicon[661] ={ [...] };

return httpd_resp_send(req, favicon, 661);

Listing A.36: Funkcja favicon_handler wysytajaca plik favicon.ico

PézZniej jest funkcja ktora wysyta wiadomosé powitalng — tworzy obiekt JSON, wpisuje do

niego wiadomos¢, dane, opis instrukcji, przyktadowy generator, istniejace sygnaty, itd.

1 static esp_err_t welcome handler (httpd_req_t *req)

2 {

4

httpd_resp_set_status(req, HTTPD_200);
httpd_resp_set_type(req, "application/json");

ordered_json doc = create_ok_response();

doc["message"] = "Welcome!\n"
"Last compilation time: ${data.cmpl.date}
<~ ${data.cmpl.time}.\n"

128

Dodatek A. Dokumentacja techniczna

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

a7 }

[...1;
doc["data"] ["cmpl"] ["date"] = __DATE__;
doc["data"] ["cmpl"] ["time"] = __TIME__;

[...]

doc["data"] ["prg"] ["cmds"] = ordered_json::array();
for (const auto &lut : CS_LUT)

{
auto cmd = ordered_json::object();
cmd["sntx"] = ""s + lut.namestr + ' ' + lut.argstr;
cmd["desc"] = lut.descstr;
doc["data"] ["prg"] ["cmds"] .push_back(cmd) ;
}

Generator gen;
gen.add(1.0f, make_signal<SignalSine>(1000));
doc["data"] ["prg"] ["gnrtr"] = static_cast<json>(gen);

doc["data"] ["prg"] ["wvfrms"] = ordered_json::array();
doc["data"] ["prg"] ["wvfrms"] .push_back(SignalType: :Const) ;
[...]

std: :string out = doc.dump();

ESP_LOGI(TAG, "Handler done.");
return httpd_resp_send(req, out.c_str(), out.length());

Listing A.37: Funkcja welcome_handler wysylajaca odpowiedz powitalng w formacie
JSON

Nastepnie przechodzimy do jednego z dwoch gtéwnych punktéw koncowych, odpowiedzial-

nego za wgrywanie ustawien do urzadzenia. Parsuje on przestany tekst na obiekt JSON, z

ktorego nastepnie wycigga generatory i zadanie do wykonania, sprawdza je, wgrywa do

pamieci i odsyta wiadomosé ze statusem i ewentualnymi napotkanymi btedami.

1 static esp_err_t settings_handler(httpd_req_t *req)

2 {

129

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

Dawid Najda

// Make sure that the producer ts *not* running

if (Communicator::check_if running())

return httpd_resp_send_err(req, HTTPD_500_INTERNAL SERVER_ERROR,

—

"Device is busy");

ESP_LOGV(TAG, "Req len: %" PRIul6, req->content_len);

Interpreter: :Program program;

std: :vector<Generator> generators;

std: :vector<std::string> errors;

ESP_LOGD(TAG, "Reading JSON...");

SocketReader reader(req);

ordered_json q = ordered_json: :parse(reader.begin(), reader.end(),

—

nullptr, false, true);

if (reader.err) // failed to read from socket

{

ESP_LOGW(TAG, "Reader error");
if (reader.err == HTTPD SOCK_ERR_TIMEQOUT)
httpd_resp_send_408(req) ;

return reader.err;

if (!q.is_discarded()) // if JSON is wvalid

{

if (q.contains("generators"))

{

ESP_LOGD(TAG, "Generators exists, trying...");

if (q.at("generators").is_array())

{

size_t count = q.at("generators").size();

generators.reserve(count) ;

for (auto &[key, vall : q.at("generators").items())

{

try
{

Generator g = val.get<Generator>();

generators.push_back(std: :move(g)) ;

130

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Dodatek A. Dokumentacja techniczna

}
catch (ordered_json::exception &e)
{
generators.emplace_back();
errors.push_back("Generator #"s + key + " failed to
— parse: " + e.what());
ESP_LOGW(TAG, "Generator failed to parse: %s",
-~ e.what());
+
val = nullptr;
}
+
else

errors.push_back("\"generators\" is not an array!");

q.erase("generators");

}
if (q.contains("task"))
{
ESP_LOGD(TAG, "Task exists, trying...");
if (q.at("task").is_string())
{
const std::string &prg = q.at("task").get_ref<const
< std::string &> Q) ;
program.parse(prg, errors);
ESP_LOGD(TAG, "Task has %u statements", program.size());
}
else
errors.push_back("\"task\" is not a string!");
q.erase("task");
}

else

errors.push_back("JSON is invalid!");

q.clear();

ESP_LOGD(TAG, "Moving configs...");

if (Board::move_config(program, generators) != ESP_0K)

return httpd_resp_send_err(req, HTTPD_500_INTERNAL_SERVER_ERROR,

"Device is busy");

131

s

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

Dawid Najda

/7
ESP_LOGD(TAG, "Responding...");

httpd_resp_set_type(req, "application/json");

if (lerrors.empty())

{

ordered_json res = create_err_response(errors);

errors.clear();

std::string out = res.dump();

res.clear();

httpd_resp_set_status(req, HTTPD_400);

return httpd_resp_send(req, out.c_str(), out.length());
}

ordered_json res = create_ok_response();

res["message"] = "Settings have been validated. No errors found.";

std::string out = res.dump();

res.clear();

ESP_LOGI(TAG, "Handler done.");
return httpd_resp_send(req, out.c_str(), out.length());
}

Listing A.38: Funkcja settings_handler odpowiedzialna za wgrywanie ustawien

Najwazniejszym (choé¢ niekoniecznie najbardziej skomplikowanym) punktem koricowym
jest ten odpowiedzialny za odsytanie zmierzonych danych do uzytkownika. Odczytuje on
zadang liczbe bajtéw dla pomiaréw czasu i przekazuje ja do komunikatora. Czysci bufor
danych, przygotowuje sie do konsumowania danych, sygnalizuje watkowi interpretera ze
moze zaczal produkowaé dane, i zaczyna je odczytywac i wysytaé¢ do uzytkownika. Petla
trwa dopodki interpreter nie zakonczylt pracy lub pozostajg jakie$ dane do wystania. W
tym czasie sprawdzana jest dostepnos¢ danych w buforze, jesli istniejg to sg one wysytane
i usuwane. Jesli nie, sprawdzane jest potaczenie z klientem. W obu przypadkach, jesli
nastapito niepowodzenie tzn. roztaczenie, interpreter jest powiadamiany i konczy przed-
wczesnie swoja prace. Po kazdej iteracji, zadanie serwera na moment zwalnia rdzen dla

innych zadan, np. stosu TCP/IP, komunikacji Wi-Fi, itd.

132

Dodatek A. Dokumentacja techniczna

1 static esp_err_t io_handler(httpd_req t *req)

2 {

4

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

// Make sure that the producer is *not* running

if (Communicator::is_running())

return httpd _resp_send err(req, HTTPD_500_INTERNAL_ SERVER_ERROR,

< "Device is busy");

auto qr = parse_query(req);

size_t time_bytes = 0;
if (auto it = qr.find("tb"); it != qr.end())

try_parse_integer(it->second, time_bytes);

if (time_bytes > 8)
time_bytes = §;

// Apply changes
ESP_LOGI(TAG, "Preparing Communicator...");
Communicator: :time_settings(time_bytes);

Communicator: :cleanup();

// Start consumer
ESP_LOGI(TAG, "Running consumer...");
httpd_resp_set_type(req, "application/octet-stream");

size_t total_sent = O;
esp_err_t ret = ESP_OK;

// Start producer
ESP_LOGI(TAG, "Notifying producer...");

Communicator: :start_running();

while (Communicator::is_running() || Communicator::has_data())

{

auto rsvd = Communicator::get_read();
if (rsvd.size() != 0) // if something to send, send

{
ESP_LOGI(TAG, "Sending %zu bytes...", rsvd.size());

133

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Dawid Najda

ret = httpd_resp_send_chunk(req, rsvd.data(), rsvd.size());

total _sent += rsvd.size();

if ('httpd_req_check_live(req)) // check if dead, ask to stop

}
else // if no new data
{
{
ESP_LOGW(TAG, "Client disconnected...");
ret = HTTPD_SOCK_ERR_TIMEQUT;
}
}

Communicator: :commit read();

if (ret != ESP_OK)

break;

taskYIELD(Q) ;

Communicator: :ask_to_exit();

while (Communicator::is_running())

vTaskDelay (pdMS_TO_TICKS(10))

ESP_LOGW(TAG, "Total sent: %zu bytes...", total_sent);

if (ret != ESP_OK)

return ret;

ESP_LOGI(TAG, "Handler done.");

return httpd_resp_send_chunk(req, nullptr, 0);

I

Listing A.39: Funkcja io_handler uruchamiajgca interpreter i przesylajaca pomiary do

uzytkownika

134

1

2

3

4

10

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

Dodatek A. Dokumentacja techniczna

A.3.3 Obstluga sprzetu i interpreter

Gléwna czedcig programu jest oczywiscie potaczona obstuga wszystkich komponentéw.
Zostala w tym celu stworzona przestrzen Board (oznaczajaca cala plytke).

Zewnetrzny interfejs jest bardzo niewielki. Zostaly stworzone enumeracje reprezentujace
analogowe porty wejsciowe i wyjsciowe, oraz enumeracja reprezentujaca zakres wejscia, a
wiec dzielniki lub wzmacniacz. Do tego kilka statych numerycznych, jak napiecie odnie-
sienia, transrezystancja (2, %) wejscia pradowego czy transkonduktancja (S, %) wyjscia
pradowego, ze wzgledu na fakt, ze przetworniki operujg napieciami; wartoéci dzielnikéw

wejs¢ 1 wzmacniacza pradowego.

enum class Input : uint8_t
{
None = O,
Inl =
In2
In3
In4

Inv

b

b

1
2
3,
4
5

b

3

};

enum class Output : uint8_t

{
None = O,
Outl = 1,
Out2 = 2,
Inv = 3,
+;

enum class AnIn_Range : uint8_t

{
OFF = 0,
Min = 1,
Med = 2,
Max = 3,
+;

namespace Board

{

constexpr const char *const TAG = "IOBoard";

135

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

Dawid Najda

constexpr double u_ref = 4.096;
constexpr double out_ref = u ref / 2 / 2 * 10;

constexpr int32_t ItoU_input = 1;
constexpr int32_t UtoIl_output = 100; // 100mA per 10V => 1V = 0.01A

// Divider settings: Min: 1V=>1V, Med: 10V=>1V, Maz: 100V=>1V
constexpr int32_t volt_divs[4] = {0, 1, 10, 100}; // ratios of

— dividers [min range => min attn

// Gains settings: R=10hm; Min: 1mA=>1V, Med: 10mA=>1V, Maz:

« 100mA=>1V

constexpr int32_t curr_gains([4] = {5, 1000, 100, 10}; // gains of

<~ instr.amp | min range => maxr gain

esp_err_t init();

esp_err_t deinit();

esp_err_t move_config(Interpreter: :Program &, std::vector<Generator>
- &);
esp_err_t give_sem_emergency();
esp_err_t test();
s

Listing A.40: Interfejs przestrzeni Board

W implementacji dostepne sa réwniez przedstawione nizej “prywatne” zmienne (a raczej
state). Okreslaja one liczbe wejs¢ i wyj$¢ analogowych, cyfrowych, piny GPIO odpowie-
dzialne za wejscia i wyjscia cyfrowe. Zostaja wstepnie stworzone obiekty ekspanderow i
przetwornikow. Inicjalizowane sg zmienne stanu wyj$é¢ cyfrowych oraz przedziatow wejsé
analogowych. Rezerwowane jest miejsce do przechowywania programu i generatoréw. Na-
stepna czes¢ to zmienne nie dotyczace bezposrednio sprzetu, lecz implementacji réznych
rozwigzan — watek interpretera, mutex dostepu do danych, timer synchronizujacy wyko-
nywanie, semafor ktory jest przez niego przelaczany, zmienne pomocnicze do zarzadzania
czasem i synchronizacjg. Finalnie przygotowane sa zmienne pomocnicze przechowujace

transakcje do przetwornikéw, maski bitowe pinéw i tablice pomocnicze do zapisu wyjscé.

nhamespace

{

136

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Dodatek A. Dokumentacja techniczna

#if

// SPECIFICATION
size_t an_in num = 4;

2;

constexpr
constexpr size_t an_out_num =
4;
4;

constexpr size_t dg_in num =

constexpr size_t dg_out _num =
// HARDWARE SETUP

constexpr std::array<gpio_num_t, dg_in_num> dig_in
GPIO_NUM_35, GPIO_NUM_36, GPIO_NUM_39};

—

constexpr std::array<gpio_num_t, dg_out_num> dig out = {GPIO_NUM_4,

GPIO _NUM_ 25, GPIO NUM 26, GPIO NUM_27};

—

MCP23008 expander_a(I2C_NUM_O, 0b000);
MCP23008 expander b(I2C_NUM_0O, 0b001);

MCP3204 adc(SPI3_HOST, GPIO_NUM_5, 2'000'000);
MCP4922 dac(SPI2_HOST, GPIO_NUM_15, 20'000'000);

// STATE MACHINE
uint32_t dg_out_state = 0;

std::array<AnIn_Range, an_in_num> an_in_range;

// CONFIG
std: :vector<Generator> generators;

Interpreter: :Program program;

//===== = == == ===//
// HELPERS //
J/===== = == == ===//

// SOFTWARE SETUP

TaskHandle_t execute_task = nullptr;
std: :mutex data mutex;
gptimer_handle_t sync_timer = nullptr;

gptimer_alarm_config t sync_alarm_cfg = {};

SYNC_USE_NOTIF NOT SEM

constexpr UBaseType_t notif_idx = O;

137

{GPID_NUM_34,

Dawid Najda

a1 #else

42 DRAM_ATTR SemaphoreHandle_t sync_semaphore;

a3 #endif

44

15 // EXECUTION

46 uint64_t time now = O;

a7 uint64_t &time_sync = sync_alarm_cfg.alarm_count;

48 DRAM_ATTR bool wait_for_sync = false;

49

50 // ADC/DAC TRANSACTIONS

51 std::array<spi_transaction_t, an_in_num> trx_in;

52 std::array<spi_transaction_t, an_out_num> trx_out;

53

54 // CONSTANTS

55 constexpr uint32_t dg_out_mask = (1 << dg_out_num) - 1;
56 constexpr uint32_t dg_in_mask = (1 << dg_in_num) - 1;
57

58 // LUT

59 constexpr size_t dg _out_lut_sz = 1 << dg_out_num;

60 constexpr std::array<uint32_t, dg_out_lut_sz> dg out_lut_s = [1(Q)
61 {

62 std: :array<uint32_t, dg_out_lut_sz> ret = {};

63 for (size_t in = 0; in < dg_out_lut_sz; ++in)

64 for (size_t b = 0; b < dg_out_num; ++b)

65 if (in & BIT(b))

66 ret[in] |= BIT(dig_out[b]l);

67 return ret;

68 HOR

69 constexpr std::array<uint32_t, dg_out_lut_sz> dg out_lut_r = []10O
70 {

71 std: :array<uint32_t, dg_out_lut_sz> ret = {};

72 for (size_t in = 0; in < dg_out_lut_sz; ++in)

73 for (size_t b = 0; b < dg_out_num; ++b)

74 if (~in & BIT(b))

7 ret[in] |= BIT(dig_out[bl);

76 return ret;

77 10O

78

79 // I/0 conversion

80 constexpr int32_t halfrangein = MCP3204::ref / 2;

138

81

82

3

Dodatek A. Dokumentacja techniczna

constexpr int32_t halfrangeout = MCP4922::ref / 2;
}

Listing A.41: Zmienne “prywatne” przestrzeni Board

Funkcje obstugujace sprzet (backend)

Teraz zostang oméwione poszczegdlne wazniejsze funkcje, réwniez te ktére sg dostepne
tylko w implementacji. Interfejs zostanie przedstawiony na koncu, gdyz przewaznie uzywa
tych od implementacji.

Funkcje konwertujace unipolarny kod z przetwornikéw na bipolarng wartosé lub odwrotnie

— proste przesuniecie.

static inline constexpr int32_t adc_offset (MCP3204::out_t val)
{

return static_cast<int32_t>(val) - halfrangein;

static inline constexpr MCP4922::in t dac_offset(int32_t val)
{

return val + halfrangeout;

Listing A.42: Funkcje konwertujace kod na wartos¢ symetryczng lub odwrotnie

Funkcja-szablon do konwersji pomiaru wejscia na wartos$¢ rzeczywista. Przyjmuje typ nu-
meryczny i opcjonalny mnoznik, w celu unikniecia powtarzania kodu. Przesuwa wartosé¢
ze wzgledu na bipolarnos¢ wejsé, mnozy przez napiecie odniesienia, mnoznik oraz wspot-

czynnik dzielnika lub wzmacniacza.

template <typename num_t, int32_t mul = 1>
static num_t bin_to_phy(Input in, int32_t sum, int32_t cnt)
{

constexpr num_t ratio = u_ref * mul / halfrangein;

if (in == Input::None || in == Input::Inv) [[unlikely]]

return O;

size_t inidx = static_cast<size_t>(in) - 1;

139

Dawid Najda

11

12

13

14

16

17

18

19

20

21

size_t rngidx =

switch (in)

{

case Input:
case Input:

case Input:

return

case Input:

return
default:

return

static_cast<size_t>(an_in_range[inidx]);

:Inl:
:In2:
:In3:
sum * ratio * volt_divs[rngidx] / cnt;
:Ind:

sum * ratio / curr_gains[rngidx] / cnt * ItoU_input;

0;

Listing A.43: Funkcja-szablon bin_to_phy konwertujaca kod binarny na wartos$¢ rzeczy-
wista

Ta funkcja dziata analogicznie, lecz w drugg strone. Zamienia warto$é rzeczywista na kod

dla przetwornika, biorac pod uwage sposéb implementacji wyjs¢.

1 static MCP4922::in_t phy_to_dac(Output out, float val)

2 {

4

10
11
12
13
14
15

16

7 }

constexpr float ratio = halfrangeout / out_ref;

if (out ==

return

if (out ==

val *=

if (val >=
return
if (val <=

return

Output: :None || out ==
0;

Output: :Inv) [[unlikely]]

Output: :0ut2)
Utol_output;

out_ref) [[unlikely]]
MCP4922: :max;
-out_ref) [[unlikely]]
MCP4922: :min;

return dac_offset(std::round(val * ratio));

140

1

2

3

4

2

1

Dodatek A. Dokumentacja techniczna

Listing A.44: Funkcja phy_to_dac zamieniajaca wartos¢ rzeczywista na kod przetwornika

Teraz zaczynaja si¢ implementacje poszczegolnych instrukcji, uzywane w interpreterze.
Funkcja ustawiajaca zakresy wejs¢ analogowych. Przyjmuje wejscie i zakres. Zapisuje do

tablicy.

static esp_err_t analog input_range(Input in, AnIn Range r)
{
if (in == Input::Nome || in >= Input::Inv) [[unlikely]]
return ESP_ERR_INVALID_ARG;

uint8_t pos = static_cast<uint8_t>(in) - 1;
an_in_range[pos] = r;
return ESP_OK;

Listing A.45: Funkcja analog_input_range ustawiajaca zakres wej$¢ portu

Funkcja wytaczajaca wejscia analogowe. Wysyta do obu ekspanderéw same zera, co po-

woduje roztaczenie wszystkich stycznikow.

static esp_err_t analog_inputs_disable()
{
ESP_RETURN_ON_ERROR(
expander_a.set_pins(0x00),
TAG, "Failed to expander_a.set_pins!");
ESP_RETURN ON_ERROR(
expander_b.set_pins(0x00),

TAG, "Failed to expander_a.set_pins!");

return ESP_OK;

Listing A.46: Funkcja analog_inputs_disable wylaczajaca wejscia analogowe

Funkcja analog_inputs_enable wiaczajaca wejécia analogowe. Ustawia styczniki za po-

mocg ekspanderow zgodnie z ustawionymi wcze$niej zakresami.

static esp_err_t analog inputs_enable()

141

Dawid Najda

2 {

3 uint8_t lower = range_to_expander_steering(an_in_range[0]) |
- range_to_expander_steering(an_in_rangel[1]) << 4;

4 uint8_t upper = range_to_expander_steering(an_in_range[2]) |
- range_to_expander_steering(an_in range[3]) << 4;

6 ESP_RETURN_ON_ERROR(

7 expander_a.set_pins(lower),

8 TAG, "Failed to expander_a.set_pins!");

0 ESP_RETURN_ON_ERROR(

10 expander_b.set_pins(upper),

11 TAG, "Failed to expander_b.set_pins!");

12

13 return ESP_(K;

14}

Listing A.47: Funkcja analog_inputs_enable wlaczajaca wejécia analogowe

Funkcja wykonujaca pomiar wejscia. Przyjmuje wejscie, zwraca do podanej zmiennej od-

czytany kod.

1 static esp_err_t analog input_read(Input in, MCP3204::out_t &out)
2 {

3 if (in == Input::None || in == Input::Inv) [[unlikely]]
4 return ESP_ERR_INVALID_ARG;

5

6 spi_transaction_t &trx = trx_in[static_cast<size_t>(in) - 1];
7

g ESP_RETURN_ON_ERROR(

9 adc.send_trx(trx),

10 TAG, "Failed to ADC send trx!");

" ESP_RETURN ON_ERROR(

12 adc.recv_trx(),

13 TAG, "Failed to ADC recv_trx!");

14

15 out = adc.parse_trx(trx);

16 return ESP_OK;

17 }

142

1

2

3

4

10

11

12

13

14

15

16

17

1

2

3

4

Dodatek A. Dokumentacja techniczna

Listing A.48: Funkcja analog_input_read wykonujaca pomiar wejscia

Funkcja wykonujaca przeciwnag operacje — wpisuje stowo do przetwornika na podane wyj-

Scie. Przyjmuje wyjscie i kod.

static esp_err_t analog output_write(Output out, MCP4922::in_t val)
{
if (out == Output::None || out == Output::Inv) [[unlikely]]
return ESP_ERR_INVALID_ARG;

spi_transaction_t &trx = trx_out[static_cast<size_t>(out) - 1];

dac.write trx(trx, val);

ESP_RETURN ON_ERROR(
dac.send_trx(trx),
TAG, "Failed to dac.send trx!");
ESP_RETURN_ ON_ERROR(
dac.recv_trx(),
TAG, "Failed to dac.recv_trx!");

return ESP_OK;
}

Listing A.49: Funkcja analog_output_write wpisujaca kod do przetwornika

Jest jeszcze jedna funkcja piszaca do wyjéé¢ analogowych. Stuzy ona do poczatkowego wy-
zerowania ich — domyslnie po wlaczeniu urzadzenia sa one w stanie wysokiej impedancji,
a wiec dzielnik powoduje pulldown i przyjecie skrajnej ujemnej wartosci. Tutaj wysta-
wiana jest warto$¢ odpowiadajgca fizycznemu zeru. Uzywana jest tez do sprzgtania po

skonczeniu wykonywania programu.

static esp_err_t analog outputs_reset()

{
constexpr MCP4922::in_t midpoint = MCP4922::ref / 2;
ESP_RETURN_ON_ERROR(
analog output_write(Output::0utl, midpoint),
TAG, "Failed to analog_output_write 1!");

ESP_RETURN ON_ERROR(
analog output_write(Output::0ut2, midpoint),

143

10

11

12

13

10

11

12

13

14

15

16

17

18

Dawid Najda

TAG, "Failed to analog output_write 2!");

return ESP_OK;
}

Listing A.50: Funkcja analog_outputs_reset zerujaca wyjsécia analogowe.

Funkcja ustawiajaca wyjscia cyfrowe. Wlacza i wylacza odpowiednie piny piszac do reje-

strow write-1-to-set oraz write-1-to-clear.

static void digital_outputs_to_registers()

{
dg_out_state &= dg_out_mask;
REG_WRITE(GPIO_OUT_W1TS_REG, dg_out_lut_s[dg_out_statel]);
REG_WRITE(GPIO_OUT_WiTC_REG, dg_out_lut_r[dg_out_state]);
}

Listing A.51: Funkcja digital outputs_to_registers ustawiajaca wyjscia cyfrowe.

Kilka funkcji stuzacych do zarzadzania zmienng stanu wyjsé cyfrowych.

static void digital_outputs_wr(uint32_t in)

{
dg_out_state = in;
digital_outputs_to_registers(Q);
}
static void digital_outputs_set(uint32_t in)
{
dg_out_state |= in;
digital_outputs_to_registers(Q);
}
static void digital_outputs_rst(uint32_t in)
{
dg_out_state &= ~in;
digital_outputs_to_registers(Q);
}
static void digital_outputs_and(uint32_t in)
{

dg_out_state &= in;

144

Dodatek A. Dokumentacja techniczna

19 digital_outputs_to_registers(Q);

20 }

21 static void digital_outputs_xor(uint32_t in)
2 {

23 dg_out_state "= in;

24 digital outputs_to_registers(Q);

25 }

Listing A.52: Funkcje zarzadzajace wyjsciami cyfrowymi

Funkcja zwracajaca stan wejs¢ cyfrowych. Odczytuje stan pindéw z rejestru. Po kolei spraw-
dza warto$¢ bitow i kompresuje je koto siebie w 4-bitowa liczbe catkowita. Rozwiniecie
petli pozwala na maksymalna optymalizacje (réwniez dzieki zastosowaniu wielu wartosci

constexpr).

1 #pragma GCC push_options
2 #pragma GCC optimize("unroll-loops™)
3 static void digital_inputs_read(uint32_t &out)

s q

5 uint32_t in = REG_READ(GPIO_IN1 REG);

6 out = 0;

7 for (size_t b = 0; b < dg_in_num; ++b)

8 out |= !!(in & BIT(dig_in[b] - 32)) << b;
o }

10 #pragma GCC pop_options

Listing A.53: Funkcja digital_inputs_read odczytujaca stan wejsé¢ cyfrowych.

Ostania funkcja do zarzadzania portéow shuzy do resetu stanu wejsé i wyjsc. Czysci tablice
zakreséw, wylgcza styczniki, wylacza wyjscia cyfrowe, zeruje wyjscia analogowe. Uzywana

do inicjalizacji i sprzatania po skonczeniu wykonywania programu.

1 static esp_err_t port_cleanup()

2 {

3 for (size_t i = 0; i < an_in_num; ++i)
4 an_in range[i] = AnIn_Range: :0FF;
5

6 digital outputs_wr(0);

145

Dawid Najda

s ESP_RETURN ON_ERROR(
9 analog_inputs_disable(),
10 TAG, "Failed to analog_inputs_disable!");

11

12 ESP_RETURN_ON_ERROR(

13 analog outputs_reset(),

14 TAG, "Failed to analog_outputs_reset!");
15

16 return ESP_0K;

17 }

Listing A.54: Funkcja port_cleanup inicjalizujaca/resetujaca wejscia i wyjscia.

Ponizej przedstawiony jest callback timera — funkcja wykonywana jako przerwanie w mo-
mencie kiedy napotka on oczekiwang wartos¢ czasu. Jesli interpreter czeka na synchroni-

zacje, daje semafor/powiadomienie i oddaje wykonywanie watkowi.

1 static IRAM_ATTR bool sync_callback(gptimer_handle t timer, const

< gptimer_alarm_event_data_t *edata, void *user_ctx)

2 {

3 BaseType_t high_task_awoken = pdFALSE;

4

5 if (edata->alarm_value == time_sync)

e #1f SYNC_USE_NOTIF_NOT_SEM

7 vTaskNotifyGiveIndexedFromISR(execute_task, notif_ idx,
< &high task_awoken);

s #else

9 xSemaphoreGiveFromISR(sync_semaphore, &high task_awoken);

10 #endif

1

12 return high task_awoken == pdTRUE;

13 }

Listing A.55: Funkcja sync_callback uruchamiana jako przerwanie przez timer

Nastepnie stworzone zostaly pomocnicze makra, wymuszajace synchronizacje jesli na nig

czekamy, oraz wyltaczajace synchronizacje.

\ #1f SYNC_USE_NOTIF_NOT_ SEM

2

146

3

4

5

6

7

10

12

13

14

16

17

19

20

21

22

23

24

25

1

2

Dodatek A. Dokumentacja techniczna

#define WAIT FOR_SYNC \
do \
{ \

if (wait_for_sync) \
while (ulTaskNotifyTakeIndezed(notif tdx, pdTRUE,
< portMAX_DELAY) != pdTRUE) \
; \
} while (0)

#define CLEAR_SYNC wulTaskNotifyTakeIndezed(notif <idz, pdTRUE, O0)

#else

#define WAIT FOR_SYNC \
do \
{ \

if (wait_for_sync) \
while (zSemaphoreTake(sync_semaphore, portMAX_ DELAY) != pdTRUE)
-\
; \
} while (0)

#define CLEAR_SYNC zSemaphoreTake (sync_semaphore, 0)

#endi f

Listing A.56: Makra pomocnicze do synchronizacji wykonywania zadania

Funkcje interfejsu (frontend)

Teraz przedstawione zostang funkcje stanowigce interfejs.

Funkcja inicjalizuje wszystkie podzespoly i inne elementy. Ustawia piny wejs¢ i wyjsé
cyfrowych, tworzy transakcje do przetwornikéw, inicjalizuje przetworniki, inicjalizuje eks-
pandery, czysci porty. Przygotowuje i wlacza timer, uruchamia watek interpretera. Istnieje
rowniez jej przeciwienstwo — funkcja deinit ktéra zatrzymuje interpreter, wylacza timer,

deinicjalizuje wszystkie podzespoty.

esp_err_t init()

{

147

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Dawid Najda

ESP_LOGI(TAG, "Initing Board...");

// GPIO

for (size_t i

{

for (size_t i =
gpio_set_direction(dig out[i], GPIO_MODE_QOUTPUT);

gpio_set_direction(dig_in[i], GPIO_MODE_INPUT);

= 0; i < dg_in_num; ++i)

gpio_pulldown_en(dig_in[il]);

// ADC/DAC

for (size_t i =

trx_in[i]

0; i < dg_out_num; ++i)

0; i < an_in_num; ++i)
MCP3204: :make trx(i);

for (size_t i = 0; i < an_out_num; ++i)

trx_out[i] = MCP4922::make trx(an_out num - i - 1); // reversed,

— because rotated chip

ESP_RETURN_ON_ERROR(

adc.init (),

TAG, "Error in adc.

ESP_RETURN_ON_ERROR(

dac.init(),

TAG, "Error in dac.

ESP_RETURN_ON_ERROR(

adc.acquire_spi(),

TAG, "Error in adc.

ESP_RETURN_ON_ERROR(

dac.acquire_spi(),

TAG, "Error in dac.

// EXPANDER
ESP_RETURN ON_ERROR(

expander_a.init(true),

init!");

init!");

acquire_spi!");

acquire_spi!");

TAG, "Error in expander_a.init!");

148

Dodatek A. Dokumentacja techniczna

42

43 ESP_RETURN_ON_ERROR(

14 expander_b.init(true),

45 TAG, "Error in expander b.init!");

46

a7 // CLEANUP BOARD

48 ESP_RETURN_ON_ERROR(

19 port_cleanup(),

50 TAG, "Error in port_cleanup!");

51

52 // TIMER

53 #1f SYNC_USE_NOTIF_NOT_ SEM

54 #else

55 ESP_RETURN_ON_FALSE(

56 (sync_semaphore = xSemaphoreCreateBinary()),
57 ESP_ERR_NO_MEM, TAG, "Error in xSemaphoreCreateBinary!");
58 #endi f

59

60 constexpr gptimer_config t timer_config = {

61 .clk_src = GPTIMER_CLK_SRC_DEFAULT,

62 .direction = GPTIMER_COUNT_UP,

63 .resolution_hz = 1 * 1000 * 1000, // 1MHz, 1 tick = 1lus
61 .flags = {

65 .intr_shared = false,

66 1,

67 s

68

69 sync_alarm_cfg.reload_count = O;

70 sync_alarm_cfg.alarm_count = 0;

71 sync_alarm_cfg.flags.auto_reload_on_alarm = false;
72

73 constexpr gptimer_event_callbacks_t evt_cb_cfg = {
74 .on_alarm = sync_callback,

75 s

76

7 ESP_RETURN_ON_ERROR(

78 gptimer _new_timer (&timer_config, &sync_timer),
79 TAG, "Error in gptimer_new_timer!");

80

o1 ESP_RETURN_ON_ERROR(

149

Dawid Najda

82 gptimer set_alarm_action(sync_timer, &sync_alarm_cfg),
83 TAG, "Error in gptimer_set_alarm_action!");

84

85 ESP_RETURN_ON_ERROR(

86 gptimer register_event_callbacks(sync_timer, &evt_cb_cfg,
< nullptr),
87 TAG, "Error in gptimer_register_event_callbacks!");

88

8 ESP_RETURN_ON_ERROR(

90 gptimer enable(sync_timer),

91 TAG, "Error in gptimer_enable!");

92

03 // SPAWN EXE TASK

94 ESP_RETURN ON_FALSE(

95 xTaskCreatePinnedToCore (execute, "BoardTask", BOARD_MEM, nullptr,
- BOARD_PRT, &execute task, CPU1),

96 ESP_ERR_NO_MEM, TAG, "Error in xTaskCreatePinnedToCore!");

97

08 ESP_LOGI(TAG, "Done!");
99 return ESP_OK;

100 }

Listing A.57: Funkcja init ustawiajaca wszystkie podzespoty po otrzymaniu zasilania

Funkcja przyjmuje program i generatory i zapisuje je poprzez przeniesienie (niszczy ory-

ginal).

1 esp_err_t move_config(Interpreter: :Program &p, std::vector<Generator> &g)

2 {

3 if (!data_mutex.try_lock())

’ return ESP_ERR_INVALID STATE;
5

6 program = std: :move(p);

7 generators = std::move(g);

8

9 data_mutex.unlock();

10 return ESP_OK;

n ¥

150

10

Dodatek A. Dokumentacja techniczna

Listing A.58: Funkcja move_config zapisujaca program i generatory

Funkcja pozwala daé¢ semafor synchronizujacy z zewnatrz. Uzywana jest przez
Communicator w celu przerwania oczekiwania, jesli uzytkownik sie roztaczyt w trakcie

wykonywania programu.

esp_err_t give_sem_emergency()
{
#if SYNC_USE_NOTIF_NOT_SEM

if (xTaskNotifyGiveIndexed(execute_task, notif_idx) != pdTRUE)
#else

if (xSemaphoreGive(sync_semaphore) != pdTRUE)
#endi f

return ESP_FAIL;
return ESP_OK;

Listing A.59: Funkcja give_sem_emergency dajaca semafor z zewnatrz

Funkcja — watek interpretera

Ostatnia, najwazniejsza funkcja jest ta stanowiaca gtéwny kod interpretera. Jest ona uru-
chamiana jako osobne zadanie na wtasnym, catkowicie przydzielonym rdzeniu. Wykorzy-
stuje wiekszo$¢ wyzej opisanych funkeji, i praktycznie caly kod jaki istnieje w programie
(poza samym serwerem HTTP).

Na poczatku czeka w petli az dostanie zezwolenie na start od watku serwera. Przygotowuje
wszystko, tzn. zamyka dostep do zmiennych, czysci porty, sprawdza program. Nastepnie
uruchamia timer i zaczyna interpretacje programu. W petli pobierana jest nowa instruk-
cja, odczytywany jest port i nastepuje wykonanie operacji. DELAY dodaje opdznienie do
wczesniejszego korica timera, sprawdza czy juz nie mingt, i kontynuuje. GETTM pobiera
obecny rzeczywisty czas, jesli jest pozniejszy niz oczekiwana synchronizacja to ja nad-
pisuje. Reszta operacji oczekuje na synchronizacje, po czym po prostu wykonuje jedng
(lub kilka) z wezesniej opisanych funkeji. Po wykonaniu synchronizowanej operacji, syn-
chronizacja jest wytaczana — kolejne operacje wykonaja sie tak szybko jak to mozliwe.
Tylko DELAY i GETTM moga wlaczaé¢ ja ponownie, jesli oczekiwany czas jeszcze nie mingt.
Jesli gdzies wystapit btad — np. funkcja nie wykonala si¢ poprawnie, nie ma miejsca w
buforze lub serwer zasygnalizowal roztaczenie uzytkownika — interpreter konczy prace. Po
skonczeniu zadania, zatrzymywany jest timer, resetowane sa porty i watek oczekuje na

ponowne uruchomienie.

151

Dawid Najda

1 static void interpreter_task(void *arg)

2 {

4

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36
37

38

__attribute__((unused)) esp_err_t ret; // used in on_false macros

Input in;

Output out;

ESP_LOGI(TAG, "Starting the Board executor...");

while (true)
{

ESP_LOGI(TAG, "Waiting for task...");

while (!Communicator::is_running())

vTaskDelay (1) ;

ESP_LOGI(TAG, "Dispatched...");

// lock access

std: :lock_guard<std::mutex> lock(data_mutex);

// prepare hardware
ESP_GOTO_ON_ERROR(
port_cleanup(),

label fail, TAG, "Failed to port_cleanup!");

// prepare software
ESP_GOTO_ON_FALSE(
program.isValid(),

ESP_ERR_INVALID_STATE, label_fail, TAG, "Program is

< invalid!");

program.reset();

// letsgooo
time now = O;
time_sync = -1;

wait_for_sync = false;

ESP_GOTO_ON_ERROR(

gptimer_set_raw_count(sync_timer, time_now),

152

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Dodatek A. Dokumentacja techniczna

label fail, TAG, "Failed to gptimer set raw_count!");

ESP_GOTO_ON_ERROR(

gptimer_set_alarm_action(sync_timer, &sync_alarm_cfg),

label fail, TAG, "Failed to gptimer set _alarm action!");

ESP_GOTO_ON_ERROR (
gptimer_ start(sync_timer),
label fail, TAG, "Failed to gptimer start!");

time_sync = 0;

while (true)

{

bool comm ok = true

b

Interpreter: :InstrPtr stmt = program.getInstr()

)

if (stmt == Interpreter::nullinstr) [[unlikely]]

break;

in = static_cast<Input>(stmt->port);

out = static_cast<Output>(stmt->port);

switch (stmt->opc)

{
case 0PCode: :DELAY:

time_sync += stmt->arg.u;

wait_for_sync =
CLEAR_SYNC;

true;

ESP_GOTO_ON_ERROR(

gptimer set_alarm_action(sync_timer,

< &sync_alarm_cfg),

label_fail, TAG, "Failed to gptimer_set_alarm_action

< in OPCode: :DELAY!");

continue;

case 0OPCode: :GETTM:
time_sync = std

wait_for_sync =

::max(time_sync, get _now());

true;

153

Dawid Najda

77 CLEAR_SYNC;
78 ESP_GOTO_ON_ERROR(
79 gptimer_set_alarm_action(sync_timer,

< &sync_alarm_cfg),

80 label_fail, TAG, "Failed to gptimer_set_alarm_action
— in 0OPCode: :GETTM!");

81 continue;

82

83 case 0PCode: :RSTTM:

84 WAIT_FOR_SYNC;

85 time_sync = -1;

86 wait_for_sync = false;

87 time_now = O;

88 CLEAR_SYNC;

89 ESP_GOTO_ON_ERROR(

90 gptimer_set_alarm_action(sync_timer,

< &sync_alarm_cfg),

o1 label_fail, TAG, "Failed to gptimer_set_alarm_action
— in OPCode: :RSTTM!");

92 time_sync = 0;

93 ESP_GOTO_ON_ERROR(

94 gptimer set_raw_count(sync_timer, time_now),

95 label_fail, TAG, "Failed to gptimer_set_raw_count in
— 0PCode: :RSTTM!");

96 continue;

97

98 case (0PCode: :DIRD:

99 {

100 WAIT_FOR_SYNC;

101 uint32_t val;

102 digital_inputs_read(val);

103 comm_ok = Communicator::write_data(get_now(), val);

104 break;

105 +

106

107 case (0PCode: :DOWR:

108 WAIT_FOR_SYNC;

100 digital_outputs_wr(stmt->arg.u);

110 break;

111 case 0PCode: :DOSET:

154

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Dodatek A. Dokumentacja techniczna

WAIT FOR_SYNC;
digital_outputs_set(stmt->arg.u);
break;

case 0OPCode: :DORST:

WAIT FOR_SYNC;
digital _outputs_rst(stmt->arg.u);
break;

case 0OPCode: :DOAND:

WAIT FOR_SYNC;
digital_outputs_and(stmt->arg.u);
break;

case 0PCode: :DOXOR:

WAIT FOR_SYNC;
digital_outputs_xor(stmt->arg.u);

break;

case 0OPCode: :AIRDF:
{
WAIT FOR_SYNC;
int32_t sum = 0O;
MCP3204: :out_t rd;
for (size_t r = stmt->arg.u; r; --r)
{
ESP_GOTO_ON_ERROR(
analog_input_read(in, rd),
label_fail, TAG, "Failed to analog_input_read in
— 0PCode: :AIRDF!");
sum += adc_offset(rd);
}
float val = bin_to_phy<float>(in, sum, stmt->arg.u);
comm_ok = Communicator::write_data(get_now(), val);
break;
}
case 0PCode: :AIRDM:
{
WAIT_FOR_SYNC;
int32_t sum = 0;
MCP3204: :out_t rd;
for (size_t r = stmt->arg.u; r; --r)

{

155

151

152

153

154

157

158

159

160

161

162

163

164

165

166

167

170

171

172

173

174

175

176

177

178

181

182

183

184

185

Dawid Najda

}

ESP_GOTO_ON_ERROR(

analog_input_read(in, rd),
label_fail, TAG, "Failed to analog_input_read in
< 0OPCode: :AIRDF!");

sum += adc_offset(rd);

¥

int32_t val = bin_to_phy<int32_t, 1'000>(in, sum,

-~ stmt->arg.u);

comm_ok = Communicator::write_data(get_now(), val);

break;

case 0PCode: :AIRDU:

{

WAIT _FOR_SYNC;
int32_t sum = 0;
MCP3204: :out_t rd;

for (size_t r = stmt->arg.u; r; --r)

{

ESP_GOTO_ON_ERROR(

analog_input_read(in, rd),
label_fail, TAG, "Failed to analog_input_read in
— 0PCode: :AIRDF!");

sum += adc_offset(rd);

3

int32_t val = bin_to_phy<int32_t, 1'000'000>(in, sum,

-~ stmt->arg.u);

comm_ok = Communicator: :write_data(get_now(), val);

break;

case 0PCode: :AQVAL:

{

MCP4922: :in_t outval = phy_to_dac(out, stmt->arg.f);
WAIT FOR_SYNC;
ESP_GOTO_ON_ERROR(

analog output_write(out, outval),

label_fail, TAG, "Failed to analog_output write in

—

break;

OPCode: : AOVAL!");

156

Dodatek A. Dokumentacja techniczna

186 case 0OPCode: :AOGEN:
187 {
188 MCP4922::in_t outval = phy_to_dac(out, (stmt->arg.u <

- generators.size()) 7

- generators[stmt->arg.u] .get(time_sync) : 0);

189 WAIT_FOR_SYNC;

190 ESP_GOTO_ON_ERROR(

101 analog_output_write(out, outval),

192 label _fail, TAG, "Failed to analog_output_write in
— 0PCode: :AOGEN!");

193 break;

194 +

195

196 case (OPCode: :AIEN:

197 WAIT_FOR_SYNC;

198 ESP_GOTO_ON_ERROR(

199 analog_inputs_enable(),

200 label_fail, TAG, "Failed to analog_inputs_enable in
— 0PCode: :AQVAL!");

201 break;

202 case 0OPCode: :AIDIS:

203 WAIT_FOR_SYNC;

204 ESP_GOTO_ON_ERROR(

205 analog_inputs_disable(),

206 label _fail, TAG, "Failed to analog_inputs_disable in
— 0OPCode::AIDIS!");

207 break;

208 case 0PCode: :AIRNG:

209 WAIT_FOR_SYNC;

210 ESP_GOTO_ON_ERROR(

211 analog_input_range(in,

< static_cast<AnIn_Range>(stmt->arg.u)),

212 label fail, TAG, "Failed to analog_input_range in
— 0PCode: :AIRNG!");

213 break;

214

215 case 0PCode: :NQOP:

216 ESP_GOTO_ON_FALSE(

217 false, ESP_FAIL,

218 label fail, TAG, "Failed in OPCode::NOP!");

157

Dawid Najda

219
220
221
222
223
224
225
226
227
228
229
230

231

232
233
234

235

239
240
241
242
243
244
245
246
247
248

249

251

252

break;
case 0PCode: :INV:
ESP_GOTO_ON_FALSE(
false, ESP_FAIL,
label fail, TAG, "Failed in OPCode::INV!I");

break;

wait_for_sync = false;

ESP_GOTO_ON_FALSE(
comm_ok,
ESP_ERR_NO_MEM, label fail, TAG, "Communicator fail - no

< buffer space!");

if (Communicator: :should exit()) [[unlikely]]

{
ESP_LOGW(TAG, "Communicator requests to exit!");
goto label fail;

WAIT_FOR_SYNC;

label fail:

gptimer_stop(sync_timer);

port_cleanup();

ESP_LOGI(TAG, "Execution took %" PRIu64 "us", get_now());
ESP_LOGI(TAG, "Exiting...");
Communicator: :confirm_exit();

+

// never ends

Listing A.60: Funkcja interpreter_task bedaca zadaniem/watkiem interpretera

158

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Dodatek A. Dokumentacja techniczna

A.4 Programy stuzgce do pomiaréw

Tutaj przedstawione sg dhuzsze kody zrédtowe programéw wykorzystywanych do ekspe-

rymentow.

A.4.1 Wyznaczanie charakterystyki czestotliwoSciowej wejscia

Program ten shuzy do wykonania pomiaréow i wyznaczenia odpowiedzi czestotliwosciowej

wejscia napieciowego na podstawie sygnatow sinusoidalnych.

import matplotlib.pyplot as plt
import numpy as np

import scipy.optimize as opt

from I0Block import IOBlock

def parse_file(fname):
times = []
vals = []
for tpl in IOBlock.read file iter(fname, "<fI"):
times.append (tpl[1] / 1000000)
vals.append(tpl[0])

return [np.array(vals), np.array(times)]

iob = I0Block()

task = """

AIRNG 1 MIN,;

AIEN;

DELAY 100000;

RSTTM;

LOOP {iter};
AOGEN 1 0;
AIRDF 1 1;
DELAY 50;

END;

159

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

55

56

57

58

59

60

61

62

Dawid Najda

frqs = [t, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90,

- 100, 200, 300, 400, 500, 600, 700, 800, 900,

-~ 5000, 6000, 7000, 8000, 9000]

fs = 1000000 / 50 # 1/(50us) = 20kHz

periods = 10

for ft in frags:
T = np.floor (1000000 / ft)

ttltime = min(2, periods * T / 1000000)

iter = int(ttltime * fs)

1000, 2000, 3000, 4000,

generators = [[{"A": 3, "S": {"WF": "Sine", "T": T}}]]

ret = iob.settings(task=task.format(iter=iter),

< generators=generators)
print(ret)
if ret["status"] != "ok":

exit ()

iob.write_file("input/datas/" + str(ft) + ".bin", 4)

exit ()

Gs = np.full_like(frqgs, 0, dtype=float)

for idx, ft in enumerate(frgs):

vo, t = parse_file("input/datas/" + str(ft) + ".bin")

t = np.array_split(t, 2)[1]
vo = np.array_split(vo, 2)[1]

rmsi = 3.1 / np.sqrt(2)

np.sqrt(np.mean(vo**2))

rmso

Gs[idx] = rmso / rmsi

print (Gs)

Gs = 20 * np.logl0(Gs)

160

Dodatek A. Dokumentacja techniczna

6o print (Gs)

2 # Define the low-pass filter function with insertion loss
73 def lowpass(f, fL):
74 return 20 * np.logl0(1l / np.sqrt(l + (£ / fL) ** 2))

m # Inittal guesses for RC and L
7s initial guess = (1e3)
7o mins = (1)

so maxs = (np.inf)

s2 # Curve fitting

s3 params, params_covariance = opt.curve fit(

84 lowpass,

85 frgs,

86 Gs N

87 pO=initial_guess,

88 bounds=(mins, maxs),
89)

90 # Fitted RC and L wvalues

o1 fLf = params

93 print ("Fitted fcil:", fLf)

os frqs_fitted = np.logspace(0, 5, 1000, endpoint=False)
o6 fitted_curve = lowpass(frqs_fitted, fLf)

97

os plt.figure()

99

1o plt.title("OdpowiedZz czestotliwoSciowa")

101 plt.plot(frgs, Gs, "o", label="Pomiar")

102 plt.plot(frgs_fitted, fitted_curve, "--", label="Dopasowanie')
103 plt.xlabel("f [Hz]")

104 plt.ylabel("G [dB]")

105 plt.xscale("log")

106 plt.legend()

107 plt.grid()

108

161

Dawid Najda

109 plt.tight_layout ()
110 plt.show()

Listing A.61: Program do wyznaczenia odpowiedzi czestotliwo$ciowej wejscia.

A.4.2 'Wyznaczanie charakterystyki wejsciowej tranzystora

Program ten stuzy do wykonania i zapisania pomiaréw z urzadzenia oraz wygenerowania

wykresu charakterystyki wejSciowej tranzystora.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from autoscale import *

4+ import os

¢ from I0Block import IOBlock

o def parse_file(fname):

10 vals = []

1 for tpl in IOBlock.read_file_ iter(fname, "<f"):
12 vals.append(tpl[0])

13 return np.array(vals)

14

15

16 tagk = """

17 ATRNG 1 MIN;
18 AIRNG 4 MAX;
19 ATEN;

20 AOVAL 1 {Uce};
21 DELAY 100000;
22 RSTTM;

23 LOOP 1000;

24 AOGEN 2 0;
25 ATRDF 1 50;
26 DELAY 1000;
27 END;

b UM

29

162

Dodatek A. Dokumentacja techniczna

s0 generators = [[{"A": 0.1, "S": {"WF": "Triangle", "T": 2000000, "P":
< 1000000}}11]

31

3 # =========
33 iob = I0Block()

34« Uce = "1"

35 ret = iob.settings(task=task.format(Uce=Uce), generators=generators)

36 print (ret)

s7 1f ret["status"] != "ok":

58 exit ()

39 iob.write_file("tran/datas/ibub/inc/" + Uce + ".bin")

10 exit ()

a

12 ibs = np.linspace(0, 1, num=1000, endpoint=False)

43

4a # Plot the magnitude and phase of the frequency response
15 plt.figure()

16 plt.suptitle("Charakterystyka Ube(Ib) dla rdéznych Uce [V]")
a7

s plt.subplot(1l, 2, 1)

19 for entry in sorted(

50 os.scandir("tran/datas/ibub/inc/"), key=lambda e:
— float(e.name.rsplit(".", 1)[0])
51)¢
52 vo = parse_file(entry.path)
53 plt.plot(ibs, vo, label="Uce=" + entry.name.rsplit(".", 1)[0])

54
55 plt.xlabel("Ib [mA]")
s6 plt.ylabel("Ube [V]")
s7 plt.grid()

55 plt.legend()

59

s plt.subplot(l, 2, 2)

61 for entry in sorted(

62 os.scandir("tran/datas/ibub/dec/"), key=lambda e:
— float(e.name.rsplit(".", 1)[0])
63)t
64 vo = parse_file(entry.path)
65 plt.plot(ibs, vo, label="Uce=" + entry.name.rsplit(".", 1)[0])

66

163

Dawid Najda

o7 plt.xlabel("Ib [mA]")
os plt.ylabel("Ube [V]")
oo plt.grid()

70 plt.legend()

7

7 plt.tight_layout()

7 plt.show()

Listing A.62: Program do wygenerowania charakterystyki wejéciowej tranzystora

A.4.3 Wyznaczanie charakterystyki przejSciowej tranzystora

Program ten stuzy do wykonania i zapisania pomiaréw z urzadzenia oraz wygenerowania

wykresu charakterystyki przejsciowej tranzystora.

1 import matplotlib.pyplot as plt
2 import numpy as np
3 from autoscale import =*

4+ import os

¢ from IOBlock import IOBlock

o def parse_file(fname):

10 vals = []

1 for tpl in IOBlock.read_file_ iter(fname, "<f"):
12 vals.append (tpl[0])

13 return np.array(vals)

14

15

16 taSk =

17 ATIRNG 1 MIN;

15 AIRNG 4 MAX;

19 ATEN;

20 AOVAL 1 {Uce}l};
21 DELAY 100000;
22 RSTTM;

23 LOOP 1000;

24 AQOGEN 2 O;

164

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Dodatek A. Dokumentacja techniczna

ATIRDF 4 50;
DELAY 1000;
END;

generators = [[{"A": 0.1, "S": {"WF": "Triangle", "T": 2000000, "P":
— 1000000}}]1]

iob = I0Block()
Uce = "0.5"

ret

iob.settings(task=task.format (Uce=Uce), generators=generators)
print(ret)
if ret["status"] != "ok":
exit ()
iob.write_file("tran/datas/ibic/" + Uce + ".bin")

exit ()

ibs = np.linspace(0, 1, num=1000, endpoint=False)

Plot the magnitude and phase of the frequency response
plt.figure()
plt.suptitle("Charakterystyka Ic(Ib) dla rdéznych Uce [V]")

for entry in sorted(
os.scandir("tran/datas/ibic/"), key=lambda e:
— float(e.name.rsplit(".", 1)[0])

vo = parse_file(entry.path)
plt.plot(ibs, vo, label="Uce=" + entry.name.rsplit(".", 1)[0])

plt.xlabel("Ib [mA]")
plt.ylabel("Ic [A]")
plt.grid()
plt.legend()

plt.tight_layout()
plt.show()

165

Dawid Najda

Listing A.63: Program do wygenerowania charakterystyki przejSciowej tranzystora

A.4.4 Wyznaczanie charakterystyki wyjSciowej tranzystora

Program ten stuzy do wykonania i zapisania pomiaréw z urzadzenia oraz wygenerowania

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

32

wykresu charakterystyki wyjsciowej tranzystora.

import matplotlib.pyplot as plt

import numpy as np

from autoscale import *

import os

from IOBlock import IOBlock

def parse_file(fname):

vals = []

for tpl in IOBlock.read_file_ iter(fname, "<f"):
vals.append (tpl[0])

return np.array(vals)

task = """
AIRNG 1 MIN;
ATIRNG 4 MAX;
ATEN;

AQVAL 2 {Ib};
DELAY 100000;
RSTTM;

LOOP 1000;

AQOGEN 1 O;
ATIRDF 4 50;
DELAY 1000;

END;

generators = [[{"A": 10,

—

1000000}}]1]

"S": {"WF": "Triangle", "T": 2000000, "P":

166

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

1

2

Dodatek A. Dokumentacja techniczna

iob = I0Block()
Ib = "0.05"

ret = iob.settings(task=task.format(Ib=Ib), generators=generators)

print(ret)
if ret["status"] != "ok":
exit ()
iob.write_file("tran/datas/uceic/" + Ib + ".bin")
exit ()

ucs = np.linspace(0, 10, num=1000, endpoint=False)

Plot the magnitude and phase of the frequency response
plt.figure()
plt.suptitle("Charakterystyka Ic(Uce) dla réznych Ib [mA]")

for entry in sorted(
os.scandir("tran/datas/uceic/"), key=lambda e:
— float(e.name.rsplit(".", 1)[0])

vo = parse_file(entry.path)
plt.plot(ucs, vo, label="Ib=" + str(float(entry.name.rsplit(".",
~ 1)[0]) * 10))

plt.xlabel("Uce [V]")
plt.ylabel("Ic [A]")
plt.grid()
plt.legend()

plt.show()

Listing A.64: Program do wygenerowania charakterystyki wyjsciowej tranzystora

A.4.5 Wyznaczanie odpowiedzi czestotliwoSciowej Swiergotem

Program ten stuzy do wykonania pomiaréow i wyznaczenia odpowiedzi czestotliwosciowej

filtra na podstawie sygnatu swiergotowego.

import matplotlib.pyplot as plt

import numpy as np

167

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

34

35

36

37

38

39

40

41

Dawid Najda

from scipy.fftpack import fft
import scipy.optimize as opt

from autoscale import *

from I0Block import IOBlock

def parse_file(fname, format):

times = []
vals = []

for tpl in IOBlock.read file_ iter(fname, format):

times.append (tpl[1] / 1000000)
vals.append(tpl[0])

return [np.array(vals), np.array(times)]

iob = I0Block()

task = """

AIRNG 1 MIN;

ATEN;

DELAY 100000;

RSTTM;

LOOP 2000000;
AOGEN 1 O;
ATIRDF 1 1;
DELAY 50;

END;

]
/M

generators

[

IIAII: 3’

IISII : {llell : lIChlrpLOgll R IlTII :

—~ 10000},

168

100000000,

IIFS n :

1 x le-6,

IIFRII :

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

s

78

79

80

81

Dodatek A. Dokumentacja techniczna

ret = iob.settings(task=task, generators=generators)
print(ret)
if ret["status"] != "ok":

exit ()

tob.write_file("filt/dataswv/chirplog/in.bin", 4)
tob.write_file("filt/dataswv/chirplog/out.bin", 4)

exit ()

vi, t = parse_file("filt/dataswv/chirplog/in.bin", "<fI")
vo, _ = parse_file("filt/dataswv/chirplog/out.bin", "<fI")
N = len(t)

fs = 20000 # (N) / (t[-1] - t[1])

print("Fs:", fs)

plt.figure()

plt.plot(t, vi, label="Input")
plt.plot(t, vo, label="Output")
plt.title("Przebieg sygnatow")
plt.xlabel("f [Hz]")
plt.ylabel("U [V]")

plt.show()

Compute FFT of input and output signals
input_fft = fft(vi)
output_fft = fft(vo)

Frequency azxis
freqs = np.fft. fftfreq(N, 1 / £fs)

Calculate frequency response

frequency_response = output_fft / input_fft

frgs = fregs[: N // 2]
dbs
phs

20 * np.loglO(np.abs(frequency_response) [: N // 2])

np.angle(frequency_response, deg=True)[: N // 2]

169

Dawid Najda

s2 # Define the low-pass filter function with insertion loss
s3 def bandpass(f, fL, fH, L):

84 return (

85 -L

86 + 20 * np.loglO(l / np.sqrt(l + (£ / fL) ** 2))

87 + 20 * np.loglO((f / fH) / np.sqrt(l + (£ / fH) *x 2))
88)

89
90

or # Initial guesses for RC and L
92 initial_guess = (lel, 1e3, -10)
93 mins = (1, 1, -np.inf)

o« maxs = (np.inf, np.inf, 0)

o6 fftkeys = np.nonzero((frgs >= 1) & (frgs <= 1000))
or fftfrs = frqgs[fftkeys]
os fftdbs = dbs[fftkeys]

99
wo # Curve fitting

101 params, params_covariance = opt.curve_fit(

102 bandpass,

103 fftfrs,

104 fftdbs,

105 pO=initial_guess,

106 bounds=(mins, maxs),

107 sigma=np.loglO(fftfrs + 1),
108)

wo # Fitted RC and L wvalues

no fLEf, fHf, Lf = params

111

2 print("Fitted fcl:", fLf)

us print("Fitted fc2:", fHf)

114 print ("Fitted insertion loss (dB):", Lf)

115

e fitted_curve = bandpass(frqs, fLf, fHf, Lf)
117

1us # Plot the magnitude and phase of the frequency response
19 plt.figure()

120

121 plt.subplot(2, 1, 1)

170

Dodatek A. Dokumentacja techniczna

122 plt.title("OdpowiedZz czestotliwoSciowa")
123 plt.plot(frgs, dbs)

124 plt.plot(frqs, fitted_curve)
125 plt.xlabel("f [Hz]")

126 plt.ylabel("G [dB]")

127 plt.xscale("log")

12s plt.x1im(1, 5000)

120 autoscale()

130 plt.grid()

131

132 plt.subplot(2, 1, 2)

133 plt.plot(frgs, phs)

134 plt.xlabel("f [Hz]")

135 plt.ylabel("g [°]")

136 plt.xscale("log")

157 plt.x1im(1, 5000)

138 autoscale()

1o plt.gca() .set_yticks(np.arange(-90, 90 + 1, 45))
140 plt.grid()

141

142 plt.tight_layout ()

1z plt.show()

Listing A.65: Program do wyznaczenia odpowiedzi czestotliwosciowej filtra. Sposéb 1.

A.4.6 Wyznaczanie odpowiedzi czestotliwo$ciowej sinusoidami

Program ten stuzy do wykonania pomiaréw i wyznaczenia odpowiedzi czestotliwosciowej

filtra na podstawie odpowiedzi na sygnaty sinusoidalne.

1 import matplotlib.pyplot as plt
2 import numpy as np

s from scipy.fftpack import fft

4 import scipy.optimize as opt

5 import os

¢ from autoscale import *

s from IOBlock import IOBlock

171

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Dawid Najda

def pars
time
vals

for

e file(fname):
s =[]

= [l

tpl in I0OBlock.read_file_iter(fname, "<fI"):
times.append(tpl[1] / 1000000)
vals.append (tpl[0])

return [np.array(vals), np.array(times)]

iob = IO

task = "
ATRNG 1
ATEN;
DELAY 10
RSTTM;
LOOP {it
AQGEN
ATIRDF
DELAY
END;

frgs = [
- 100,
- 5000

fs = 100

periods

for ft i
T:
ttlt

iter

gene
ret

—

Block()

MIN;

0000;

er};
1 0;
11;
50;

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90,
200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000,

, 6000]

0000 / 50 # 1/(50us) = 20kHz
= 10

n frqgs:

np.floor (1000000 / ft)

ime = min(2, periods * T / 1000000)
= int(ttltime * fs)

rators = [[{"A": 3, "S": {"WF": "Sine", "T": T}}]]

= iob.settings(task=task.format(iter=iter),

generators=generators)

172

47

48

49

50

51

52

53

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

Dodatek A. Dokumentacja techniczna

print(ret)
if ret["status"] != "ok":

exit ()

iob.write_file("filt/datassine/in/" + str(ft) + ".bin", 4)
tob.write_file("filt/datassine/out/" + str(ft) + ".bin", 4)

exit ()

Gs
Ps

np.full like(frqgs, 0, dtype=float)
np.full_like(frgs, 0, dtype=float)

for idx, ft in enumerate(frgs):
vi, t = parse_file("filt/datassine/in/" + str(ft) + ".bin")
vo, _ = parse_file("filt/datassine/out/" + str(ft) + ".bin")

t = np.array_split(t, 2)[1]
vi = np.array_split(vi, 2)[1]

vo = np.array_split(vo, 2)[1]

vi -= np.mean(vi)

vo —= np.mean(vo)

rmsi = np.sqrt(np.mean(vi**2))

rmso = np.sqrt(np.mean(vo**2))

Gs[idx] = rmso / rmsi

correlation = np.correlate(vi, vo, mode="full")

lag = np.argmax(correlation) - (len(vi) - 1)
phsh = ((lag / fs * ft) 7 1) * 360
if phsh > 180:
phsh -= 360
Ps[idx] = phsh

print (Gs)
print (Ps)

173

Dawid Najda

87
ss plt.figure()

89

90 plt.subplot(2, 1, 1)

o1 plt.title("OdpowiedZz czestotliwoSciowa")
92 plt.plot(frgs, 20*np.logl0(Gs))

o3 # plt.plot(frgs, fitted_curve)

o plt.xlabel ("f [Hz]")

o5 plt.ylabel("G [dB]")

96 plt.xscale("log")

or # plt.yscale("log")

o8 # plt.zlim(1, 5000)

o0 # autoscale()

100 plt.grid()

101

102 plt.subplot(2, 1, 2)

103 plt.plot(frgs, Ps)

104 plt.xlabel ("f [Hz]")

s plt.ylabel("e [°]")

106 plt.xscale("log")

wor # plt.zlim(1, 5000)

s # autoscale()

w9 plt.gca() .set_yticks(np.arange(-90, 90 + 1, 45))
1o plt.grid ()

11

12 plt.tight_layout ()

1z plt.show()

Listing A.66: Program do wyznaczenia odpowiedzi czestotliwosciowej filtra. Sposéb 2.

174

Dodatek B

Schemat ideowy calego bloku

(I A4 (I A4

wejsé-wyjs¢ analogowych i cyfrowych

Ponizej przedstawione sg schematy ideowe calego bloku wejéé-wyjsé analogowych i cyfro-
wych. Pierwszy schemat zawiera mikrokontroler, sekcje zasilania oraz porty cyfrowe. Drugi

schemat zawiera wyjscia analogowe. Trzeci schemat przedstawia wejscia analogowe.

175

IS

vee =
n \(ee USA UI6A
T D7 MCP602-1/P+4.096 MCP602-1/P
3 ul2 +51 vee U2 +5a
LN our 2 LN our B
-4.096
= GND *Cl GND *c3
2 5 ci8 LM4040C41ILPR
LM7804 LM7803 =
_ sy = sV =
i) T
3 vCee Uul3 +5¢ -vee 7 -5
/\—q Tl our { 2N our BB
~vec GND +Cs GND UsB U16B
) > T|_ S TC—“FC 6 MCP602-1/P+2.048 MCP602-1/P
Lm780d LM7903_YISS
— = 2.048
5
U6
433 +51
- T_21 33V VIN ‘%T . -
6 T Ula] — GND GND == I = = : +33
O = R57 6) DAC CS 2> DIS DI3 s DAC_MOSI RN -
O R5%] 3 OUT1 N1 < o1 D2 DI2 5e— ad] [=i 51 5N 2
) [R50 | OUT2 IN2 D4 D14 DAC CLK I 15 -
SR —nan ma—H e i e T
o L ouT4 IN4 X2 D26 [t — QIT@ g RS3 [[0}
o L 2] g 5 3 = 5
—1_] OUTS IN5 < D5 D25 > RYM 10
P1 = 01 OUT 6 IN 6 = D18 D33 <N;1 Tekas Instruments SN74HC125N RY%v 3 [0}
= 3 out7 N7 i D19 D32 <t — R R O
| [s4] 53] AN
ol Gw 1 7] P D Lo S<r3<r & 1 g
XD2003 = | S 12 8 - - —Sda
5 —5> TXO VN i X =
12C SCL 5> D22 VP i ~T~ o va cT ~ 5
ADC_MOSI 20 D23 EN
L _L_ pr—
ESP32-DOIT-DEVKIT V1 - 30 pin -) 3
Title
Size Number Revision
A4
Date 6/14/2024 [Sheet of
File: Power_Digital.SchDoc | Drawn By:

1 2 4
| R33 3 R34
L ¥ Rrox
= & VEC Vee vee
20
2.048 U20B U20, U20C
R27 9
R1 -
R 47K Ro2 > z o @ 1 :
2 25K Trim R31 10 +
R30 =
R 47K . .
1 B 1 1
Ul15 -vcc = -vcc -vcc
DAC MOSI >—2c1 DI VOUTA (14
;| — VouTB
DAC CS)—& CS
DAC CLK o> SCK
| g LDAC
+5a SHDN
qﬁi VREFA NC % e
+4.096 VREFB NC —— R40
1 12 = U21A
Inm VDD A 1 R 100k
¥Sa MCP4922-E/P = R4l
R90k RS0 s
>R 10
VCee 1
-vcc
U20D ®
R47
R48 14
R 47K .
S, 25K Trim 12 > RG7 R32
p: o 2100K Trim 100K Trim B
R49 S S
V R47K - e o
-2.048 1 1 vee
vce = =
R43
R 100k u21D
13 ™ 9
14 R46
12 > R90k RS5I 10
g LR36
— >R 1k
- = P3
‘:R44 1 1
SR 100k -Vcc 2
Header
Title
Size Number Revision
A4
Date: 6/14/2024 [Sheet of
File: Analog_Output.SchDoc | Drawn By:
1 2 4

+3.3 U4
T fwp so
151 GP7 SDA ~5—12C SDA
131 GP6 A2 =7
2ot GPS Al :5—{“
551 GP4 A0 =2
P71 GP3 RESET —|7 +33
o1 GP2 NC ——
ToF1 GPI INE p—o—
GPO VSS __I_
MCP23008-E/P =
3.3 U3
18 1 S
7 VDD SCL <=
o= GP7 SDA =5
Ts1 GP6 A2 =
351 GPS Al j—{s ||.
351 GP4 A0 <=
5> GP3 RESET 473—|+3A3
77> GP2 NC ——
o] GPl INE p——
GPO VSS __I_
'|| '|| MCP23008-E/P =
oo~ |C|n]t|n|]— oo~ | o |n]T|en|]|—
Qmmmmmmmmoz ommmmmmme'
Z %~ 0¥ o — ULN2803A Z 0~ C < oA — ULN2803A +5a
o o +5a +5a
s s Ul1D
Souuuuooo CUULVLLVLLLU 13
XM=V WV A — Vo ontoa— 9 7 — 14
9:|<:::2£:£ 2:|§~:£|£:£ IS I— 2ol
+51 +51 B = —
+5r= 2 fm\ 6 +5a +5a +5a +5a =
8 | 14
O |
U10A
i 2 6 MCP6024-1/P
+5t} MG R23
4 8 | 14 RS 25K Tri
3 O VWA
2 | 2 6 _
\:l:l—'—; 1 |||- +5rf)I(— tDz =
8 | 14
°|/C f—
K3 1 1 i
< =
o |t
| 51} 2 rm\ 6 t5a t5a t5a t5a
8 o1 14
BNCI y U10B
i 2 6 D3 MCP6024-1/P
+5rf)I & R24 |
4 8 | 14 5 25K Trin
O ¢
3 [> P >
2 | 2 6 —
1—||I' +5r] NE y = Ul
8 | 14 9 10
° Lo = > DIN DOUT
K6 5 —— 21 CHO
| = 551 CHI
o |t)) CH2
+5cf 2 rm\ 6 t5a t5a t5a t5a 4. cm3
8 | 14 _ . 8 | = 5
BNC2 g ulic 10C T CCS&HDN Eg 6
sl 2 KiGvp© A D3| 9P R7 G EE MCP6024-1/P [ADC CLK) —
} e 3 R25 8 13 7
R 47K . <+
. s | 1 RI1 0, >c8 = o, > 8 +4.096 VREF DGND It
3 T 14 12
> i | o 5 6 RS +5a)—2< VDD AGND It
' Y = —
T Sty .)I (. y = LV RATK A D6 = MCP3204-BI/P
O}c ’ p—
-5 —
K9 1 1
< =
® ||' 2 6 2§I§6Trim +5
< a
5t} fm\ 3e = Uls =2
8 | 14 R2 INA122PA
2 o Leal -
BNC3 J Y RTS8 U10D
| 2 6 S5 25K Trim R61 MCP6024-1/P
P) € o 6 R62 14
! R21 R 47K .
8 o 14 e _ 2o 25K Trim
J R16 4 b3
+5rl 2)I > 6 5K Trim L - =
8 i 14 R22 B $R63 e
! b SR 47K =
K12 40k G=10
2105.26 G=100
201.005 G=1000 +4.096
Title
Size Number Revision
A3
Date: 6/14/2024 [Sheet of
File: Analog Input.SchDoc | Drawn By:

1 2 3 4 5 6 7 8

Dodatek C

Spis skrotow i symboli

AC
DC
A/C
C/A
A/D
D/A
ADC
DAC
PWM
PDM
INL
DNL

MMIO

UART

12C

SPI

alternating current, prad przemienny

direct current, prad staty

analogowo-cyfrowy

cyfrowo-analogowy

analog/digital, analogowo-cyfrowy

digital/analog, cyfrowo-analogowy

Analog-Digital Converter, przetwornik A/C
Digital-Analog Converter, przetwornik C/A

Pulse- Width Modulation, modulacja szerokosci impulsow
Pulse-Density Modulation, modulacja gestosci impulsow
integral nonlinearity, nieliniowos¢ catkowa

differential nonlinearity, nieliniowos¢ rézniczkowa

memory-mapped input/output, sposob utatwienia obstugi dostepu do i wykonywania

operacji na urzadzeniach wejscia/wyjscia w systemach komputerowych

universal asynchronous receiver-transmitter, uniwersalny asynchroniczny nadajnik-

odbiornik

Inter-Integrated Chircuit, szeregowa, dwukierunkowa magistrala stuzaca do przesyta-

nia danych
Serial Peripheral Interface, szeregowy interfejs urzadzen peryferyjnych

179

Dawid Najda

SQNR signal-to-quantization-noise ratio, stosunek mocy sygnatu do zaktdcenia kwantyzacji

DR Dynamic Range, rozpietos¢ tonalna, mozliwa réznicaa miedzy minimalng a maksy-

malng wartoscig

180

Spis rysunkow

[2.1 Symbole przetwornikow|. oo oo 4
[2.2 Przyklad wyznaczania nieliniowosci rozniczkowej |2 7
[2.3 Przyklad wyznaczania nieliniowosci catkowej 2]o 8
[2.4 Schemat przetwornika Flash (4|o 000 11
[2.5 Schemat przetwornika SAR [4]| oo oL 11
[2.6 Schemat przetwornika Dual Slope [4]| 12
[2.7 Schemat przetwornika XA [4]. Symulacjao 13
[2.8 Schemat przetwornika Ramp-Compare |4 13
[2.9 Schemat przetwornika Voltage-to-Frequency [4]|. 14
[2.10 Schemat przetwornika PWM 15
[2.11 Schemat przetwornika wazonego dwojkowo, rezystorowy |4 17
[2.12 Schemat przetwornika wazonego dwojkowo, kondensatorowy [4f|. 17
[2.13 Schemat przetwornika wazonego dwojkowo, napieciowy [4] 17
[2.14 Schemat przetwornika wazonego dwojkowo, drabinka R-2R 4[| 18
[2.15 Schemat przetwornika cyklicznego (4] 18
[2.16 Schemat przetwornika termometrycznego, napieciowy [4ff 19
[2.17 Schemat przetwornika termometrycznego, pradowy [4]|. 19
[2.18 Ogodlny diagram urzadzenial 28
[3.1 Ptytka ewaluacyjna z chipem ESP-WROOM-32[. 31
[3.2 Funkcyjny diagram blokowy procesora] 32
(3.3 Schemat blokowy przetwornika MCP3204 21)| 32
(3.4 Schemat blokowy przetwornika MCP4922 22| 33
[3.5 Diagram blokowy toru cyfrowego wejsciowego| 35
[3.6 Schemat ideowy toru cyfrowego wejsciowego| 35
[3.7 Diagram blokowy toru cyfrowego wyjsciowego| 35
[3.8 Schemat ideowy toru cyfrowego wyjsciowego| 35
[3.9 Diagram blokowy toru napieciowego wejsciowego|. 36
[3.10 Schemat ideowy toru napieciowego wejsciowegol 36
[3.11 Diagram blokowy toru pradowego wejsciowego| 36
[3.12 Schemat ideowy toru pradowego wejsciowego| 37

181

https://www.falstad.com/circuit/circuitjs.html?ctz=CQAgzCAMB0l3AWAnC1b0DZwCZoHYBWAgDgLgO0gTKPGJAIcgYFMBaARg4CgB3EDggQhsYbAKEDiwyNwDGE4R2kjsSlcxjxI6XeiixIHA3B79saqcIvWE9Wf0HWxA7PVHjZHDJpHF74BgBlALaYbIATq7uLsTMHlChsgBKIJxYYEFp3iAIkAHMebmJmtAE3ADmqtZx1SJIWJrc3sJE4m70PvH+AiAFJQO+AGYAhgA2AM4sUM1ZXX6dLh3gfYNrTakEPgySW8wEeI0ioSJlp4ylRtypnCGUzOnucInGxjIlZdwIHEggGHYLEB4DjtHrGYh8RLLeIA2RVJwif6KepHWQjOrYJFgKiI4S-C5JbQDDhhbjo+KxCniX4cRicRgksLEyFsLYiHLxDncABu2RCYnotypAyKbDA0Eyg0+VSFOEFIOYmV8aORancljVq1p2QZ4WJpNSYAo7IyxuU73EjPiZ1wBJg5UcGTcuQBApmtMY2OsWJBuN6XloYEOfrAKkxShm-CN7RyXpNkfAOOwsaTtQc4GNyYywazCejIZzSNkAElwDnYzm0wZGA7chqkUJ3EXIY2-IVXc6A4Vass2oDjJ4GC2ew069ZR+nW+GXe408Put3OY15-Gg1hcykBBksjk8v1Re9SuVaftjcgsH3qFgB4la3sdq1tueZqWCLt38Jn0eh-w361dtsf4JvM3wXmeXK-mezyXhBDDgWB4hXjMADKaRsrmsobokoyTNM8TcAA9gIEAuIUOj0MQ0A-D8qDEJkHKGEYUICHgMyhlIIAAGLGA8n7ZCAABqBFjAALiMFQsNwQA

Dawid Najda

[3.13 Diagram blokowy toru napieciowego wyjsciowego| 37
[3.14 Diagram blokowy toru napieciowego wyjsciowego| 37
[3.15 Schemat ideowy toru pradowego wyjsciowego| 38
[3.16 Schemat ideowy toru analogowy pradowego wyjsciowego| 38
[3.17 Przyktadowe moduty Ethernet|, 40
[3.18 Schemat blokowy inicjalizacji wszystkich komponentow| 41
[3.19 Obrazek favicon.ico przedstawiajacy symbol przetwornikal 42
[3.20 Schemat blokowy interpreteral 46
[3.21 Zdjecie zbudowanego prototypu urzadzenial L. 54
[4.1 Przebieg wygenerowanej sinusoidy o czestotliwosci 1Hz 62
[4.2 Przebieg wygenerowanej sinusoidy o czestotliwosci 10Hz[. 62
[4.3 Przebieg wygenerowanej sinusoidy o czestotliwosci 100Hz 62
[4.4 Przebieg wygenerowanej sinusoidy o czestotliwosci 1kHz7| 63
[4.5 Przebieg wygenerowanej sinusoidy o czestotliwosci 10kHz{ 63
[4.6 Przebieg wygenerowanej sinusoidy o czestotliwosci 10 kHz po filtrowaniu|. . 64
[4.7 Panel przedni filtra model 3202R firmy Krohn-Hite] 64
[4.8 Przebieg sygnatu sinusoidalnego| 65
[4.9 Przebieg sygnatu prostokatnegolo 65
[4.10 Przebieg sygnatu trojkatnegol oL 66
[4.11 Przebieg sygnatu pitoksztattnego| 66
[4.12 Przebieg funkcji symulujacej prosty inwerter| 67
[4.13 Przebieg tfunkcji symulujacej prosty inwerter po przefiltrowaniu|. 67
[4.14 Przebieg sygnatu losowego i po lekkim przefiltrowaniuf. 67
[4.15 Przebieg sygnatu losowego 1 po mocniejszym przefiltrowaniv| 68
[4.16 Przebieg sygnatu swiergotowego| 69
[4.17 Przebieg sygnatu swiergotowego logarytmicznego|. 69
[4.18 Punkty pomiarowe wraz z dopasowang funkcjal 71
{4.19 Amplituda pomiaréw sygnatu swiergotowego w funkcji czasu/czestotliwosci] 71
[4.20 Schemat ukladu uzytego do przeprowadzenia doswiadczen| 72
.21 Zaleznos¢ wzmocnienia od pradu kolektora tranzystora 2N3904 [8| 74
[4.22 Charakterystyka wejsciowa tranzystora 2N3904f. 75
[4.23 Charakterystyka wejsciowa tranzystora 2N3055(. 75
[4.24 Charakterystyka przejsciowa tranzystora 2N3904(. 76
[4.25 Charakterystyka przejsciowa tranzystora 2N3055(. 76
[4.26 Charakterystyka wyjsciowa tranzystora 2N3904] 7
[4.27 Charakterystyka wyjsciowa tranzystora 2N3055| 7
[4.28 Charakterystyki roznych diod| 78
[4.29 Schemat filtra oraz wartosci komponentow|o L. 79

182

Spis rysunkow

[4.30 Przebieg sygnatow wejSciowego 1 WejSCIOWeEO|« . . . oo .o 80
[4.31 Odpowiedz czestotliwosciowa amplitudy i fazyl 81
[4.32 Odpowiedz czestotliwosciowa amplitudy i fazy| 82
[4.33 Odpowiedz czestotliwosciowa amplitudy i fazyl 83

183

Dawid Najda

184

Spis kodow

[4.1 Klasa I0Block upraszczajaca obstuge urzadzenia | 56
[4.2 Program stuzacy do wgrywania ustawien do urzadzenia |. 57
[4.3 Program stuzacy do odbierania pomiarow z urzadzenia | o7
[4.4 Zadanie stuzace do generowania sinusoid | 61
[4.5 Przetestowane generatory | L. 64
[4.6 Zadanie stuzace do generowania sinusoid | 65
[4.7 Przetestowane generatory sygnatu swiergotowego | 68
[4.8 Zadanie generujace 1 mierzace sygnaty | 68
[4.9 Zadanie stuzace do badania odpowiedzi czestotliwosciowej | 70
[A.1 Szablon definicji klasy zarzadzajacej ADC | 94
[A.2 Nazwane specjalizacje szablonu dla roznych uktadow z rodziny MCP3xxx |. 95
[A.3 Szablon definicji klasy zarzadzajacej DAC | 96
[A.4 Nazwane specjalizacje szablonu dla roznych ukladow z rodziny MCP4xxx |. 96
[A.5 Definicja klasy zarzadzajacej ekspanderem GPIO |. 98
[A.6 Kod klasy SocketReader stuzacej do odczytu przesytanych danych frag-
mentami J. 100
[A.7 Kod wewnetrznej klasy iterator stuzacej jako interfejs dla parsera | . . . 101
[A.8 Enumeracja OPCode istniejacych operacji |. 102
[A.9 Klasa Instruction reprezentujaca instrukcje | 103
[A.10 Deklaracje klas i typow |o 103
[A.11 Klasa Scope reprezentujaca liste operacji (zasieg widocznosci) | 104
[A.12 Definicja klasy Loop przechowujace] powtarzany Scope | 104
[A.13 Definicja klasy Program przetrzymujacej zadanie | 105
[A.14 Przygotowanie tablicy zawierajace] spis instrukcji 1 informacji o nich | . . 106

[A.15 Kod metody Program::parse odpowiedzialnej za konwersje z tekstu na |

drzewo polecen | 110
[A.16 Kod klasy Generator uzywanej do produkcji przebiegow | 111
[A.17 Kod wirtualnej klasy Signal stuzacej do generowania podstawowych |

ksztattow fal |o 112
[A.18 Klasa SignalHdl do przechowywania klasy Signal oraz fabryki tejze | . . 113
[A.19 Klasa SignalConst generujaca przebieg o statej wartosci |. 114

185

Dawid Najda

[A.20 Klasa SignalImpulse generujaca impuls w czasie 0 | 115

[A.21 Klasa SignalSine generujaca sinusoide o podanym okresie |. 115

[A.22 Klasa SignalSquare generujaca prostokat (typu PWM) o podanym okresie

[Twypelnieniu |o 116

[A.23 Klasa SignalTriangle generujaca trojkat, pite 1 posrednie o podanym

[okresie 1 czasie szczytu | 117

[A.24 Klasa SignalChirp generujaca Swiergot o podanym czasie, poczatkowe]j

[czestotliwosci 1 zmianie |. L 117

[A.25 Klasa SignalChirpLog generujaca swiergot zmieniajacy sie wyktadniczo

| w czasie (liniowo w skali logarytmicznej) o podanym czasie, poczatkowej

| czestotliwoscl 1 mnozniku zmiany |o 118
[A.26 Klasa SignalRandom generujaca wartosci losowe w przedziale [—1,1) | . . 119
[A.27 Klasa SignalDelay generujaca opoznienie innego sygnatu | 119

[A.28 Klasa SignalAbsolute generujaca wartosc bezwzgledng innego sygnatu |. 120

[A.29 Klasa SignalClamp generujaca inny sygnat ograniczony minimalna i mak-

[symalng wartoScia | 121

[A.30 Klasa SignallLinearMap generujaca inny sygnai przetworzony przez funk-
[cieliniowa A-x+5 | 121
[A.31 Klasa SignalMultiply generujaca iloczyn wartosci dwoch innych sygnatow (122

[A.32 Interfejs przestrzeni Communicator uzywanej do komunikacji miedzy wat-

[kami |. 124
[A.33 Zmienne “prywatne” przestrzeni Communicator | 124
[A.34 Funkcja parse query tworzaca stownik parametrow | 126

[A.35 Funkcja start webserver ustawiajaca 1 uruchamiajaca serwer oraz

[Zmienne pomocnicze | Lo 128
[A.36 Funkcja favicon handler wysytajaca plik favicon.ico |. 128
[A.37 Funkcja welcome handler wysytajaca odpowiedz powitalng w formacie

| JOON | o o e e 129
[A.38 Funkcja settings handler odpowiedzialna za wgrywanie ustawien | . . . 132

[A.39 Funkcja io handler uruchamiajaca interpreter 1 przesytajaca pomiary do

| uzytkownika | ... 134
[A.40 Interfejs przestrzeni Board |. 136
[A.41 Zmienne “prywatne” przestrzeni Board |. 139
[A.42 Funkcje konwertujace kod na wartos¢ symetryczna lub odwrotnie | 139

[A.43 Funkcja-szablon bin_to_phy konwertujaca kod binarny na wartosc rzeczy-

[wista |, . . e 140
[A.44 Funkcja phy to_dac zamieniajaca wartoS¢ rzeczywista na kod przetwor-

[nika | ..o 140
[A.45 Funkcja analog input range ustawlajaca zakres wejsc portu | 141

186

Spis kodéw

[A.46 Funkcja analog inputs disable wytaczajaca wejscia analogowe | 141
[A.47 Funkcja analog inputs enable wtaczajaca wejscia analogowe |[. 142
[A.48 Funkcja analog input read wykonujaca pomiar wejscia | 142
[A.49 Funkcja analog output write wpisujaca kod do przetwornika | 143
[A.50 Funkcja analog outputs_reset zerujaca wyjscia analogowe. | 144
[A.51 Funkcja digital outputs_to registers ustawiajaca wyjscia cyfrowe. |. 144
[A.52 Funkcje zarzadzajace wyjsciami cyfrowymi | 145
[A.53 Funkcja digital inputs_read odczytujaca stan wejs¢ cyfrowych. |. . . . 145
[A.54 Funkcja port_cleanup inicjalizujaca/resetujaca wejscia i wyjscia. | 146
[A.55 Funkcja sync callback uruchamiana jako przerwanie przez timer |. . . . 146
[A.56 Makra pomocnicze do synchronizacji wykonywania zadania |. 147

[A.57 Funkcja init ustawiajaca wszystkie podzespoty po otrzymaniu zasilania | 150

[A.58 Funkcja move config zapisujaca program i generatory | 150
[A.59 Funkcja give sem emergency dajaca semafor z zewnatrz |. 151
[A.60 Funkcja interpreter_task bedaca zadaniem/watkiem interpretera |. . . 158
[A.61 Program do wyznaczenia odpowiedzi czestotliwosciowe] wejscia. | 162
[A.62 Program do wygenerowania charakterystyki wejsciowej tranzystora | . . . 164
[A.63 Program do wygenerowania charakterystyki przejsciowej tranzystora | . . 165
[A.64 Program do wygenerowania charakterystyki wyjsciowej tranzystora | . . . 167
[A.65 Program do wyznaczenia odpowiedzi czestotliwosciowej filtra. Sposob 1. | 171
[A.66 Program do wyznaczenia odpowiedzi czestotliwosciowej filtra. Sposob 2. | 174

187

Dawid Najda

188

	Wstęp
	Cel pracy
	Zakres pracy

	Analiza tematu
	Przetworniki
	Cel przetwarzania sygnałów
	Zasada działania przetworników
	Parametry charakteryzujące przetworniki

	Ocena jakości działania przetworników
	Parametry termiczne
	Monotoniczność
	Nieliniowość przetwarzania
	Błąd niezrównoważenia
	Błąd kwantyzacji
	Współczynnik zawartości harmonicznych

	Techniki pomagające poprawić jakość
	Dither
	Budowa przetworników
	Budowa przetworników analogowo-cyfrowych
	Budowa przetworników cyfrowo-analogowych

	Komunikacja z peryferiami
	Układ UART
	Magistrala I2C
	Interfejs SPI

	Połączenie między urządzeniami
	Łącze RS-232
	Łącze RS-485
	Magistrala USB
	Standard Ethernet
	Standard Wi-Fi
	Standard Bluetooth

	Wybór sposobu komunikacji
	Gniazda (sockets)
	WebSocket
	Serwer HTTP

	Koncepcja pracy
	Zadawanie zadań urządzeniu

	Konstrukcja budowanego urządzenia
	Użyte podzespoły
	Mikrokontroler
	Przetworniki A/C i C/A
	Wzmacniacze
	Inne układy
	Schematy ideowe torów

	Połączenie z komputerem
	Oprogramowanie
	Inicjalizacja układu
	Praca ciągła

	Punkty końcowe API
	Powitanie, pomoc, ogólne informacje
	Wgrywanie zadania do urządzenia
	Wykonywanie zadania i odbiór danych

	Parser i interpreter
	Zamiana tekstu na format binarny – parser zadania
	Interpreter zadań

	Wykonywanie zadań
	Pętle
	Instrukcje

	Generator sygnałów
	Typy przebiegów możliwych do użycia w generatorach
	Modyfikatory przebiegów
	Opis przykładowych generatorów

	Prototyp bloku wejść-wyjść analogowych i cyfrowych

	Kalibracja i testy urządzenia
	Kalibracja wejść i wyjść
	Kalibracja wejść analogowych
	Kalibracja dzielników napięcia i wzmocnień
	Kalibracja wyjścia napięciowego
	Kalibracja wyjścia prądowego
	Test wejść cyfrowych
	Test wyjść cyfrowych

	Sprawdzenie charakterystyki częstotliwościowej wyjścia
	Przykładowe generatory – podstawowe sygnały
	Odpowiedź częstotliwościowa wejścia napięciowego
	Badanie sygnałem sinusoidalnym
	Badanie sygnałem świergotowym

	Eksperyment 1 – wyznaczenie charakterystyk tranzystora BJT
	Badanie charakterystyki wejściowej tranzystora
	Badanie charakterystyki przejściowej tranzystora
	Badanie charakterystyki wyjściowej tranzystora
	Wykresy charakterystyk tranzystorów 2N3904 i 2N3055 wyznaczone za pomocą prototypu bloku wejść-wyjść

	Eksperyment 2 – wyznaczenie charakterystyk diod półprzewodnikowych
	Eksperyment 3 – wyznaczenie odpowiedzi częstotliwościowej filtra

	Podsumowanie
	Bibliografia
	Dokumentacja techniczna
	Oprogramowanie
	Klasy
	Obsługa przetwornika A/C
	Obsługa przetwornika C/A
	Obsługa ekspandera GPIO
	Odczytywanie ustawień
	Zadania
	Parser
	Generatory

	Przestrzenie nazw
	Komunikacja między wątkami
	Serwer HTTP
	Obsługa sprzętu i interpreter

	Programy służące do pomiarów
	Wyznaczanie charakterystyki częstotliwościowej wejścia
	Wyznaczanie charakterystyki wejściowej tranzystora
	Wyznaczanie charakterystyki przejściowej tranzystora
	Wyznaczanie charakterystyki wyjściowej tranzystora
	Wyznaczanie odpowiedzi częstotliwościowej świergotem
	Wyznaczanie odpowiedzi częstotliwościowej sinusoidami

	Schemat ideowy całego bloku wejść-wyjść analogowych i cyfrowych
	Spis skrótów i symboli
	Spis rysunków
	Spis kodów

